
Adversarial Examples
Neil Gong

Today’s lecture

• What is adversarial example

• Why do we care

• How to find adversarial example

Adversarial Examples

3

39:2 N. Z. Gong and X. Cao

Fig. 1. Adversarial examples generated by an evasion a�ack proposed by Carlini andWagner [?].

processing [?], and playing games [?]. For instance, DNNs can recognize images with accuracies
that are comparable to human [?]; and they can outperform the best human Go players [?].

However, researchers in various communities–such as security, machine learning, and computer
vision–have demonstrated that DNNs are vulnerable to a�acks at testing time [? ? ? ? ? ? ?]. For
instance, in image recognition, an a�acker can add a small noise to a testing example such that the
example is misclassi�ed by a DNN classi�er. �e testing example with noise is called adversarial
example [?]. In contrast, the original example is called benign example. Usually, the noise is
so small such that, to human, the benign example and adversarial example still have the same
label. Figure 1 shows some adversarial examples for digit recognition in the MNIST dataset. �e
adversarial examples were generated by the state-of-the-art evasion a�acks proposed by Carlini
and Wagner [?]. We use the same DNN classi�er as the one used by them. �e examples in the ith
row have true label i , while the examples in the jth column are predicted to have label j by the
DNN classi�er, where i, j = 0, 1, · · · , 9.
Evasion a�acks limit the use of DNNs in safety and security critical applications such as self-

driving cars. �e adversarial examples can make self-driving cars make unwanted decisions. For
instance, one basic capability of self-driving cars is to automatically recognize stop signs and
tra�c lights. Suppose an adversary creates an adversarial stop sign, i.e., the adversary adds several
human-imperceptible dots to a stop sign, such that the self-driving car does not recognize it as a
stop sign. As a result, self-driving cars will not stop at the stop sign and may collide with other
cars, resulting in severe tra�c accidents.

To defend against evasion a�acks, Goodfellow et al. [?] proposed to train a DNN via augmenting
the training dataset with adversarial examples, which is known as adversarial training. Speci�cally,
for each training benign example, the learner generates a training adversarial example using evasion
a�acks. �en, the learner uses a standard algorithm (e.g., back propagation) to learn a DNN using
the original training benign examples and the corresponding adversarial examples. Adversarial

ACM Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:2 N. Z. Gong and X. Cao

Fig. 1. Adversarial examples generated by an evasion a�ack proposed by Carlini andWagner [?].

processing [?], and playing games [?]. For instance, DNNs can recognize images with accuracies
that are comparable to human [?]; and they can outperform the best human Go players [?].

However, researchers in various communities–such as security, machine learning, and computer
vision–have demonstrated that DNNs are vulnerable to a�acks at testing time [? ? ? ? ? ? ?]. For
instance, in image recognition, an a�acker can add a small noise to a testing example such that the
example is misclassi�ed by a DNN classi�er. �e testing example with noise is called adversarial
example [?]. In contrast, the original example is called benign example. Usually, the noise is
so small such that, to human, the benign example and adversarial example still have the same
label. Figure 1 shows some adversarial examples for digit recognition in the MNIST dataset. �e
adversarial examples were generated by the state-of-the-art evasion a�acks proposed by Carlini
and Wagner [?]. We use the same DNN classi�er as the one used by them. �e examples in the ith
row have true label i , while the examples in the jth column are predicted to have label j by the
DNN classi�er, where i, j = 0, 1, · · · , 9.
Evasion a�acks limit the use of DNNs in safety and security critical applications such as self-

driving cars. �e adversarial examples can make self-driving cars make unwanted decisions. For
instance, one basic capability of self-driving cars is to automatically recognize stop signs and
tra�c lights. Suppose an adversary creates an adversarial stop sign, i.e., the adversary adds several
human-imperceptible dots to a stop sign, such that the self-driving car does not recognize it as a
stop sign. As a result, self-driving cars will not stop at the stop sign and may collide with other
cars, resulting in severe tra�c accidents.

To defend against evasion a�acks, Goodfellow et al. [?] proposed to train a DNN via augmenting
the training dataset with adversarial examples, which is known as adversarial training. Speci�cally,
for each training benign example, the learner generates a training adversarial example using evasion
a�acks. �en, the learner uses a standard algorithm (e.g., back propagation) to learn a DNN using
the original training benign examples and the corresponding adversarial examples. Adversarial

ACM Transactions on Privacy and Security, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Normal example: digit 0 Adversarial example:
predicted to be 9

Adversarial Examples
•Classifier C
•Normal example x
• Image, text, audio, graph, software

•Perturb x to x’
• Preserving semantics

•C misclassifies x’
• Targeted: C(x’)=t, an attacker-chosen target label
• Untargeted: C(x’) ≠ C(x)

4

Why do we care?

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

Malware -> benign software

Spam -> non-spam

Privacy protection

Guiding design of ML
Stop sign to speed limit

Attacker’s Background Knowledge

Model parameters
White box

Strongest attacker

Access to prediction API
Black box

Weakest attacker

Learning algorithm
Hyperparameter, e.g., neural network architecture

Training data

How to Find Adversarial Examples - Image Domain
• Perturb x to x’

• Preserving semantics
• Human perceives x’ and x as the same
• d(x,x’) is small

7

Minimize d(x,x’)
Subject to (1) C(x’) = t or C(x’) ≠ C(x)

(2) x’ is still an image

L0, L2, L∞ norm
of the noise x’-x

Solving the optimization problem
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
u
cc

e
ss

 P
ro

b
a
b
ili

ty

0
2

4
6

8
1
0

M
e
a
n
 A

d
ve

rs
a
ri

a
l E

xa
m

p
le

 D
is

ta
n
ce

1e−02 1e−01 1e+00 1e+01 1e+02

Constant c used

Fig. 2. Sensitivity on the constant c. We plot the L2 distance of the adversarial
example computed by gradient descent as a function of c, for objective
function f6. When c < .1, the attack rarely succeeds. After c > 1, the
attack becomes less effective, but always succeeds.

where c > 0 is a suitably chosen constant. These two are
equivalent, in the sense that there exists c > 0 such that the
optimal solution to the latter matches the optimal solution to
the former. After instantiating the distance metric D with an
lp norm, the problem becomes: given x, find � that solves

minimize k�kp + c · f(x+ �)

such that x+ � 2 [0, 1]n

Choosing the constant c.
Empirically, we have found that often the best way to choose

c is to use the smallest value of c for which the resulting
solution x⇤ has f(x⇤)  0. This causes gradient descent to
minimize both of the terms simultaneously instead of picking
only one to optimize over first.

We verify this by running our f6 formulation (which we
found most effective) for values of c spaced uniformly (on a
log scale) from c = 0.01 to c = 100 on the MNIST dataset.
We plot this line in Figure 2. 7

Further, we have found that if choose the smallest c such
that f(x⇤)  0, the solution is within 5% of optimal 70% of
the time, and within 30% of optimal 98% of the time, where
“optimal” refers to the solution found using the best value of
c. Therefore, in our implementations we use modified binary
search to choose c.

7The corresponding figures for other objective functions are similar; we
omit them for brevity.

B. Box constraints

To ensure the modification yields a valid image, we have a
constraint on �: we must have 0  xi+ �i  1 for all i. In the
optimization literature, this is known as a “box constraint.”
Previous work uses a particular optimization algorithm, L-
BFGS-B, which supports box constraints natively.

We investigate three different methods of approaching this
problem.

1) Projected gradient descent performs one step of standard
gradient descent, and then clips all the coordinates to be
within the box.
This approach can work poorly for gradient descent
approaches that have a complicated update step (for
example, those with momentum): when we clip the
actual xi, we unexpectedly change the input to the next
iteration of the algorithm.

2) Clipped gradient descent does not clip xi on each
iteration; rather, it incorporates the clipping into the
objective function to be minimized. In other words, we
replace f(x + �) with f(min(max(x + �, 0), 1)), with
the min and max taken component-wise.
While solving the main issue with projected gradient de-
scent, clipping introduces a new problem: the algorithm
can get stuck in a flat spot where it has increased some
component xi to be substantially larger than the maxi-
mum allowed. When this happens, the partial derivative
becomes zero, so even if some improvement is possible
by later reducing xi, gradient descent has no way to
detect this.

3) Change of variables introduces a new variable w and
instead of optimizing over the variable � defined above,
we apply a change-of-variables and optimize over w,
setting

�i =
1

2
(tanh(wi) + 1)� xi.

Since �1  tanh(wi)  1, it follows that 0  xi+�i 
1, so the solution will automatically be valid. 8

We can think of this approach as a smoothing of clipped
gradient descent that eliminates the problem of getting
stuck in extreme regions.

These methods allow us to use other optimization algo-
rithms that don’t natively support box constraints. We use the
Adam [23] optimizer almost exclusively, as we have found it to
be the most effective at quickly finding adversarial examples.
We tried three solvers — standard gradient descent, gradient
descent with momentum, and Adam — and all three produced
identical-quality solutions. However, Adam converges substan-
tially more quickly than the others.

C. Evaluation of approaches

For each possible objective function f(·) and method to
enforce the box constraint, we evaluate the quality of the
adversarial examples found.

8Instead of scaling by 1
2 we scale by 1

2 + ✏ to avoid dividing by zero.

7

X’

Box constraints

Loss function

Layer Type MNIST Model CIFAR Model

Convolution + ReLU 3⇥3⇥32 3⇥3⇥64
Convolution + ReLU 3⇥3⇥32 3⇥3⇥64
Max Pooling 2⇥2 2⇥2
Convolution + ReLU 3⇥3⇥64 3⇥3⇥128
Convolution + ReLU 3⇥3⇥64 3⇥3⇥128
Max Pooling 2⇥2 2⇥2
Fully Connected + ReLU 200 256
Fully Connected + ReLU 200 256
Softmax 10 10

TABLE I
MODEL ARCHITECTURES FOR THE MNIST AND CIFAR MODELS. THIS

ARCHITECTURE IS IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE
DISTILLATION WORK. [39]

Parameter MNIST Model CIFAR Model

Learning Rate 0.1 0.01 (decay 0.5)
Momentum 0.9 0.9 (decay 0.5)
Delay Rate - 10 epochs
Dropout 0.5 0.5
Batch Size 128 128
Epochs 50 50

TABLE II
MODEL PARAMETERS FOR THE MNIST AND CIFAR MODELS. THESE
PARAMETERS ARE IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE

DISTILLATION WORK. [39]

We train two networks for the MNIST [28] and CIFAR-10
[24] classification tasks, and use one pre-trained network for
the ImageNet classification task [41]. Our models and training
approaches are identical to those presented in [39]. We achieve
99.5% accuracy on MNIST, comparable to the state of the
art. On CIFAR-10, we achieve 80% accuracy, identical to the
accuracy given in the distillation work. 6

MNIST and CIFAR-10. The model architecture is given in
Table I and the hyperparameters selected in Table II. We use
a momentum-based SGD optimizer during training.

The CIFAR-10 model significantly overfits the training data
even with dropout: we obtain a final training cross-entropy
loss of 0.05 with accuracy 98%, compared to a validation
loss of 1.2 with validation accuracy 80%. We do not alter
the network by performing image augmentation or adding
additional dropout as that was not done in [39].

ImageNet. Along with considering MNIST and CIFAR,
which are both relatively small datasets, we also consider
the ImageNet dataset. Instead of training our own ImageNet
model, we use the pre-trained Inception v3 network [45],
which achieves 96% top-5 accuracy (that is, the probability
that the correct class is one of the five most likely as reported
by the network is 96%). Inception takes images as 299⇥299⇥3
dimensional vectors.

6This is compared to the state-of-the-art result of 95% [12], [44], [31].
However, in order to provide the most accurate comparison to the original
work, we feel it is important to reproduce their model architectures.

V. OUR APPROACH

We now turn to our approach for constructing adversarial
examples. To begin, we rely on the initial formulation of
adversarial examples [46] and formally define the problem of
finding an adversarial instance for an image x as follows:

minimize D(x, x+ �)

such that C(x+ �) = t

x+ � 2 [0, 1]n

where x is fixed, and the goal is to find � that minimizes
D(x, x+�). That is, we want to find some small change � that
we can make to an image x that will change its classification,
but so that the result is still a valid image. Here D is some
distance metric; for us, it will be either L0, L2, or L1 as
discussed earlier.

We solve this problem by formulating it as an appropriate
optimization instance that can be solved by existing optimiza-
tion algorithms. There are many possible ways to do this;
we explore the space of formulations and empirically identify
which ones lead to the most effective attacks.

A. Objective Function
The above formulation is difficult for existing algorithms

to solve directly, as the constraint C(x + �) = t is highly
non-linear. Therefore, we express it in a different form that is
better suited for optimization. We define an objective function
f such that C(x+ �) = t if and only if f(x+ �)  0. There
are many possible choices for f :

f1(x
0) = �lossF,t(x

0) + 1

f2(x
0) = (max

i 6=t
(F (x0)i)� F (x0)t)

+

f3(x
0) = softplus(max

i 6=t
(F (x0)i)� F (x0)t)� log(2)

f4(x
0) = (0.5� F (x0)t)

+

f5(x
0) = � log(2F (x0)t � 2)

f6(x
0) = (max

i 6=t
(Z(x0)i)� Z(x0)t)

+

f7(x
0) = softplus(max

i 6=t
(Z(x0)i)� Z(x0)t)� log(2)

where s is the correct classification, (e)+ is short-hand for
max(e, 0), softplus(x) = log(1 + exp(x)), and lossF,s(x) is
the cross entropy loss for x.

Notice that we have adjusted some of the above formula by
adding a constant; we have done this only so that the function
respects our definition. This does not impact the final result,
as it just scales the minimization function.

Now, instead of formulating the problem as

minimize D(x, x+ �)

such that f(x+ �)  0

x+ � 2 [0, 1]n

we use the alternative formulation:

minimize D(x, x+ �) + c · f(x+ �)

such that x+ � 2 [0, 1]n

6

Box constraints

• Projected gradient descent

• Clipped gradient descent
• Incorporate clipping into objective function

• Change of variables

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
u

cc
e

ss
 P

ro
b

a
b

ili
ty

0
2

4
6

8
1

0
M

e
a

n
 A

d
ve

rs
a

ri
a

l E
xa

m
p

le
 D

is
ta

n
ce

1e−02 1e−01 1e+00 1e+01 1e+02

Constant c used

Fig. 2. Sensitivity on the constant c. We plot the L2 distance of the adversarial
example computed by gradient descent as a function of c, for objective
function f6. When c < .1, the attack rarely succeeds. After c > 1, the
attack becomes less effective, but always succeeds.

where c > 0 is a suitably chosen constant. These two are
equivalent, in the sense that there exists c > 0 such that the
optimal solution to the latter matches the optimal solution to
the former. After instantiating the distance metric D with an
lp norm, the problem becomes: given x, find � that solves

minimize k�kp + c · f(x+ �)

such that x+ � 2 [0, 1]n

Choosing the constant c.
Empirically, we have found that often the best way to choose

c is to use the smallest value of c for which the resulting
solution x⇤ has f(x⇤)  0. This causes gradient descent to
minimize both of the terms simultaneously instead of picking
only one to optimize over first.

We verify this by running our f6 formulation (which we
found most effective) for values of c spaced uniformly (on a
log scale) from c = 0.01 to c = 100 on the MNIST dataset.
We plot this line in Figure 2. 7

Further, we have found that if choose the smallest c such
that f(x⇤)  0, the solution is within 5% of optimal 70% of
the time, and within 30% of optimal 98% of the time, where
“optimal” refers to the solution found using the best value of
c. Therefore, in our implementations we use modified binary
search to choose c.

7The corresponding figures for other objective functions are similar; we
omit them for brevity.

B. Box constraints

To ensure the modification yields a valid image, we have a
constraint on �: we must have 0  xi+ �i  1 for all i. In the
optimization literature, this is known as a “box constraint.”
Previous work uses a particular optimization algorithm, L-
BFGS-B, which supports box constraints natively.

We investigate three different methods of approaching this
problem.

1) Projected gradient descent performs one step of standard
gradient descent, and then clips all the coordinates to be
within the box.
This approach can work poorly for gradient descent
approaches that have a complicated update step (for
example, those with momentum): when we clip the
actual xi, we unexpectedly change the input to the next
iteration of the algorithm.

2) Clipped gradient descent does not clip xi on each
iteration; rather, it incorporates the clipping into the
objective function to be minimized. In other words, we
replace f(x + �) with f(min(max(x + �, 0), 1)), with
the min and max taken component-wise.
While solving the main issue with projected gradient de-
scent, clipping introduces a new problem: the algorithm
can get stuck in a flat spot where it has increased some
component xi to be substantially larger than the maxi-
mum allowed. When this happens, the partial derivative
becomes zero, so even if some improvement is possible
by later reducing xi, gradient descent has no way to
detect this.

3) Change of variables introduces a new variable w and
instead of optimizing over the variable � defined above,
we apply a change-of-variables and optimize over w,
setting

�i =
1

2
(tanh(wi) + 1)� xi.

Since �1  tanh(wi)  1, it follows that 0  xi+�i 
1, so the solution will automatically be valid. 8

We can think of this approach as a smoothing of clipped
gradient descent that eliminates the problem of getting
stuck in extreme regions.

These methods allow us to use other optimization algo-
rithms that don’t natively support box constraints. We use the
Adam [23] optimizer almost exclusively, as we have found it to
be the most effective at quickly finding adversarial examples.
We tried three solvers — standard gradient descent, gradient
descent with momentum, and Adam — and all three produced
identical-quality solutions. However, Adam converges substan-
tially more quickly than the others.

C. Evaluation of approaches

For each possible objective function f(·) and method to
enforce the box constraint, we evaluate the quality of the
adversarial examples found.

8Instead of scaling by 1
2 we scale by 1

2 + ✏ to avoid dividing by zero.

7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
u

cc
e

ss
 P

ro
b

a
b

ili
ty

0
2

4
6

8
1

0
M

e
a

n
 A

d
ve

rs
a

ri
a

l E
xa

m
p

le
 D

is
ta

n
ce

1e−02 1e−01 1e+00 1e+01 1e+02

Constant c used

Fig. 2. Sensitivity on the constant c. We plot the L2 distance of the adversarial
example computed by gradient descent as a function of c, for objective
function f6. When c < .1, the attack rarely succeeds. After c > 1, the
attack becomes less effective, but always succeeds.

where c > 0 is a suitably chosen constant. These two are
equivalent, in the sense that there exists c > 0 such that the
optimal solution to the latter matches the optimal solution to
the former. After instantiating the distance metric D with an
lp norm, the problem becomes: given x, find � that solves

minimize k�kp + c · f(x+ �)

such that x+ � 2 [0, 1]n

Choosing the constant c.
Empirically, we have found that often the best way to choose

c is to use the smallest value of c for which the resulting
solution x⇤ has f(x⇤)  0. This causes gradient descent to
minimize both of the terms simultaneously instead of picking
only one to optimize over first.

We verify this by running our f6 formulation (which we
found most effective) for values of c spaced uniformly (on a
log scale) from c = 0.01 to c = 100 on the MNIST dataset.
We plot this line in Figure 2. 7

Further, we have found that if choose the smallest c such
that f(x⇤)  0, the solution is within 5% of optimal 70% of
the time, and within 30% of optimal 98% of the time, where
“optimal” refers to the solution found using the best value of
c. Therefore, in our implementations we use modified binary
search to choose c.

7The corresponding figures for other objective functions are similar; we
omit them for brevity.

B. Box constraints

To ensure the modification yields a valid image, we have a
constraint on �: we must have 0  xi+ �i  1 for all i. In the
optimization literature, this is known as a “box constraint.”
Previous work uses a particular optimization algorithm, L-
BFGS-B, which supports box constraints natively.

We investigate three different methods of approaching this
problem.

1) Projected gradient descent performs one step of standard
gradient descent, and then clips all the coordinates to be
within the box.
This approach can work poorly for gradient descent
approaches that have a complicated update step (for
example, those with momentum): when we clip the
actual xi, we unexpectedly change the input to the next
iteration of the algorithm.

2) Clipped gradient descent does not clip xi on each
iteration; rather, it incorporates the clipping into the
objective function to be minimized. In other words, we
replace f(x + �) with f(min(max(x + �, 0), 1)), with
the min and max taken component-wise.
While solving the main issue with projected gradient de-
scent, clipping introduces a new problem: the algorithm
can get stuck in a flat spot where it has increased some
component xi to be substantially larger than the maxi-
mum allowed. When this happens, the partial derivative
becomes zero, so even if some improvement is possible
by later reducing xi, gradient descent has no way to
detect this.

3) Change of variables introduces a new variable w and
instead of optimizing over the variable � defined above,
we apply a change-of-variables and optimize over w,
setting

�i =
1

2
(tanh(wi) + 1)� xi.

Since �1  tanh(wi)  1, it follows that 0  xi+�i 
1, so the solution will automatically be valid. 8

We can think of this approach as a smoothing of clipped
gradient descent that eliminates the problem of getting
stuck in extreme regions.

These methods allow us to use other optimization algo-
rithms that don’t natively support box constraints. We use the
Adam [23] optimizer almost exclusively, as we have found it to
be the most effective at quickly finding adversarial examples.
We tried three solvers — standard gradient descent, gradient
descent with momentum, and Adam — and all three produced
identical-quality solutions. However, Adam converges substan-
tially more quickly than the others.

C. Evaluation of approaches

For each possible objective function f(·) and method to
enforce the box constraint, we evaluate the quality of the
adversarial examples found.

8Instead of scaling by 1
2 we scale by 1

2 + ✏ to avoid dividing by zero.

7

Examples
Target Classification (L2)

0 1 2 3 4 5 6 7 8 9

So
ur

ce
C

la
ss

ifi
ca

tio
n

9
8

7
6

5
4

3
2

1
0

Fig. 3. Our L2 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

solutions by changing one pixel value at a time. This greedy
search never failed for any of our attacks.

Prior work has largely ignored the integrality constraints.10

For instance, when using the fast gradient sign attack with ✏ =
0.1 (i.e., changing pixel values by 10%), discretization rarely
affects the success rate of the attack. In contrast, in our work,
we are able to find attacks that make much smaller changes
to the images, so discretization effects cannot be ignored. We
take care to always generate valid images; when reporting the
success rate of our attacks, they always are for attacks that
include the discretization post-processing.

VI. OUR THREE ATTACKS

A. Our L2 Attack

Putting these ideas together, we obtain a method for finding
adversarial examples that will have low distortion in the L2

metric. Given x, we choose a target class t (such that we have
t 6= C⇤(x)) and then search for w that solves

minimize k1
2
(tanh(w) + 1)� xk22 + c · f(1

2
(tanh(w) + 1)

with f defined as

f(x0) = max(max{Z(x0)i : i 6= t}� Z(x0)t,�).

This f is based on the best objective function found earlier,
modified slightly so that we can control the confidence with
which the misclassification occurs by adjusting . The param-
eter  encourages the solver to find an adversarial instance
x0 that will be classified as class t with high confidence. We
set  = 0 for our attacks but we note here that a side benefit

10One exception: The JSMA attack [38] handles this by only setting the
output value to either 0 or 255.

Target Classification (L0)
0 1 2 3 4 5 6 7 8 9

So
ur

ce
C

la
ss

ifi
ca

tio
n

9
8

7
6

5
4

3
2

1
0

Fig. 4. Our L0 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

of this formulation is it allows one to control for the desired
confidence. This is discussed further in Section VIII-D.

Figure 3 shows this attack applied to our MNIST model
for each source digit and target digit. Almost all attacks are
visually indistinguishable from the original digit.

A comparable figure (Figure 12) for CIFAR is in the ap-
pendix. No attack is visually distinguishable from the baseline
image.

Multiple starting-point gradient descent. The main problem
with gradient descent is that its greedy search is not guaranteed
to find the optimal solution and can become stuck in a local
minimum. To remedy this, we pick multiple random starting
points close to the original image and run gradient descent
from each of those points for a fixed number of iterations.
We randomly sample points uniformly from the ball of radius
r, where r is the closest adversarial example found so far.
Starting from multiple starting points reduces the likelihood
that gradient descent gets stuck in a bad local minimum.

B. Our L0 Attack

The L0 distance metric is non-differentiable and therefore
is ill-suited for standard gradient descent. Instead, we use an
iterative algorithm that, in each iteration, identifies some pixels
that don’t have much effect on the classifier output and then
fixes those pixels, so their value will never be changed. The
set of fixed pixels grows in each iteration until we have, by
process of elimination, identified a minimal (but possibly not
minimum) subset of pixels that can be modified to generate an
adversarial example. In each iteration, we use our L2 attack
to identify which pixels are unimportant.

In more detail, on each iteration, we call the L2 adversary,
restricted to only modify the pixels in the allowed set. Let

9

Target Classification (L2)
0 1 2 3 4 5 6 7 8 9

So
ur

ce
C

la
ss

ifi
ca

tio
n

9
8

7
6

5
4

3
2

1
0

Fig. 3. Our L2 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

solutions by changing one pixel value at a time. This greedy
search never failed for any of our attacks.

Prior work has largely ignored the integrality constraints.10

For instance, when using the fast gradient sign attack with ✏ =
0.1 (i.e., changing pixel values by 10%), discretization rarely
affects the success rate of the attack. In contrast, in our work,
we are able to find attacks that make much smaller changes
to the images, so discretization effects cannot be ignored. We
take care to always generate valid images; when reporting the
success rate of our attacks, they always are for attacks that
include the discretization post-processing.

VI. OUR THREE ATTACKS

A. Our L2 Attack

Putting these ideas together, we obtain a method for finding
adversarial examples that will have low distortion in the L2

metric. Given x, we choose a target class t (such that we have
t 6= C⇤(x)) and then search for w that solves

minimize k1
2
(tanh(w) + 1)� xk22 + c · f(1

2
(tanh(w) + 1)

with f defined as

f(x0) = max(max{Z(x0)i : i 6= t}� Z(x0)t,�).

This f is based on the best objective function found earlier,
modified slightly so that we can control the confidence with
which the misclassification occurs by adjusting . The param-
eter  encourages the solver to find an adversarial instance
x0 that will be classified as class t with high confidence. We
set  = 0 for our attacks but we note here that a side benefit

10One exception: The JSMA attack [38] handles this by only setting the
output value to either 0 or 255.

Target Classification (L0)
0 1 2 3 4 5 6 7 8 9

So
ur

ce
C

la
ss

ifi
ca

tio
n

9
8

7
6

5
4

3
2

1
0

Fig. 4. Our L0 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

of this formulation is it allows one to control for the desired
confidence. This is discussed further in Section VIII-D.

Figure 3 shows this attack applied to our MNIST model
for each source digit and target digit. Almost all attacks are
visually indistinguishable from the original digit.

A comparable figure (Figure 12) for CIFAR is in the ap-
pendix. No attack is visually distinguishable from the baseline
image.

Multiple starting-point gradient descent. The main problem
with gradient descent is that its greedy search is not guaranteed
to find the optimal solution and can become stuck in a local
minimum. To remedy this, we pick multiple random starting
points close to the original image and run gradient descent
from each of those points for a fixed number of iterations.
We randomly sample points uniformly from the ball of radius
r, where r is the closest adversarial example found so far.
Starting from multiple starting points reduces the likelihood
that gradient descent gets stuck in a bad local minimum.

B. Our L0 Attack

The L0 distance metric is non-differentiable and therefore
is ill-suited for standard gradient descent. Instead, we use an
iterative algorithm that, in each iteration, identifies some pixels
that don’t have much effect on the classifier output and then
fixes those pixels, so their value will never be changed. The
set of fixed pixels grows in each iteration until we have, by
process of elimination, identified a minimal (but possibly not
minimum) subset of pixels that can be modified to generate an
adversarial example. In each iteration, we use our L2 attack
to identify which pixels are unimportant.

In more detail, on each iteration, we call the L2 adversary,
restricted to only modify the pixels in the allowed set. Let

9

� be the solution returned from the L2 adversary on input
image x, so that x+ � is an adversarial example. We compute
g = rf(x + �) (the gradient of the objective function,
evaluated at the adversarial instance). We then select the pixel
i = argmini gi · �i and fix i, i.e., remove i from the allowed
set.11 The intuition is that gi ·�i tells us how much reduction to
f(·) we obtain from the ith pixel of the image, when moving
from x to x + �: gi tells us how much reduction in f we
obtain, per unit change to the ith pixel, and we multiply this
by how much the ith pixel has changed. This process repeats
until the L2 adversary fails to find an adversarial example.

There is one final detail required to achieve strong results:
choosing a constant c to use for the L2 adversary. To do this,
we initially set c to a very low value (e.g., 10�4). We then
run our L2 adversary at this c-value. If it fails, we double c
and try again, until it is successful. We abort the search if c
exceeds a fixed threshold (e.g., 1010).

JSMA grows a set — initially empty — of pixels that are
allowed to be changed and sets the pixels to maximize the total
loss. In contrast, our attack shrinks the set of pixels — initially
containing every pixel — that are allowed to be changed.

Our algorithm is significantly more effective than JSMA
(see Section VII for an evaluation). It is also efficient: we
introduce optimizations that make it about as fast as our L2

attack with a single starting point on MNIST and CIFAR; it is
substantially slower on ImageNet. Instead of starting gradient
descent in each iteration from the initial image, we start the
gradient descent from the solution found on the previous
iteration (“warm-start”). This dramatically reduces the number
of rounds of gradient descent needed during each iteration, as
the solution with k pixels held constant is often very similar
to the solution with k + 1 pixels held constant.

Figure 4 shows the L0 attack applied to one digit of each
source class, targeting each target class, on the MNIST dataset.
The attacks are visually noticeable, implying the L0 attack is
more difficult than L2. Perhaps the worst case is that of a 7
being made to classify as a 6; interestingly, this attack for L2

is one of the only visually distinguishable attacks.
A comparable figure (Figure 11) for CIFAR is in the

appendix.

C. Our L1 Attack

The L1 distance metric is not fully differentiable and
standard gradient descent does not perform well for it. We
experimented with naively optimizing

minimize c · f(x+ �) + k�k1

However, we found that gradient descent produces very poor
results: the k�k1 term only penalizes the largest (in absolute
value) entry in � and has no impact on any of the other. As
such, gradient descent very quickly becomes stuck oscillating
between two suboptimal solutions. Consider a case where �i =
0.5 and �j = 0.5 � ✏. The L1 norm will only penalize �i,

11Selecting the index i that minimizes �i is simpler, but it yields results
with 1.5⇥ higher L0 distortion.

Target Classification (L1)
0 1 2 3 4 5 6 7 8 9

So
ur

ce
C

la
ss

ifi
ca

tio
n

9
8

7
6

5
4

3
2

1
0

Fig. 5. Our L1 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

not �j , and @
@�j

k�k1 will be zero at this point. Thus, the
gradient imposes no penalty for increasing �j , even though it
is already large. On the next iteration we might move to a
position where �j is slightly larger than �i, say �i = 0.5� ✏0

and �j = 0.5 + ✏00, a mirror image of where we started. In
other words, gradient descent may oscillate back and forth
across the line �i = �j = 0.5, making it nearly impossible to
make progress.

We resolve this issue using an iterative attack. We replace
the L2 term in the objective function with a penalty for any
terms that exceed ⌧ (initially 1, decreasing in each iteration).
This prevents oscillation, as this loss term penalizes all large
values simultaneously. Specifically, in each iteration we solve

minimize c · f(x+ �) + ·
X

i

⇥
(�i � ⌧)+

⇤

After each iteration, if �i < ⌧ for all i, we reduce ⌧ by a factor
of 0.9 and repeat; otherwise, we terminate the search.

Again we must choose a good constant c to use for the
L1 adversary. We take the same approach as we do for the
L0 attack: initially set c to a very low value and run the L1
adversary at this c-value. If it fails, we double c and try again,
until it is successful. We abort the search if c exceeds a fixed
threshold.

Using “warm-start” for gradient descent in each iteration,
this algorithm is about as fast as our L2 algorithm (with a
single starting point).

Figure 5 shows the L1 attack applied to one digit of each
source class, targeting each target class, on the MNSIT dataset.
While most differences are not visually noticeable, a few are.
Again, the worst case is that of a 7 being made to classify as
a 6.

10

Evaluation metrics – what is a successful
adversarial example

• Misclassification
• Targeted: C(x’)=t, an attacker-chosen target label
• Untargeted: C(x’) ≠ C(x)

• Human perceives x’ and x as the same
• Hard to implement – involves user studies
• Approximate using L_p norm of noise

Other methods

• Beyond L_p norm

• Physically realizable adversarial examples

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

(a) (b) (c) (d)

Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows SA (top) and SB (bottom) dodging
against DNNB . Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and
corresponding impersonation targets in the bottom row. Fig. (b) shows SA impersonating Milla Jovovich (by Georges Biard
/ CC BY-SA / cropped from https://goo.gl/GlsWlC); (c) SB impersonating SC ; and (d) SC impersonating Carson Daly (by
Anthony Quintano / CC BY / cropped from https://goo.gl/VfnDct).

Figure 5: The eyeglass frames used by SC for dodging recog-
nition against DNNB .

postors) never occurs, while true acceptance remains high.
Following a similar procedure, we found that a threshold of
0.90 achieved a reasonable tradeo↵ between security and us-
ability for DNNC ; the true acceptance rate became 92.01%
and the false acceptance rate became 4e�3. Attempting
to decrease the false acceptance rate to 0 reduced the true
acceptance rate to 41.42%, making the FRS unusable.

Using thresholds changes the definition of successful im-
personation: to successfully impersonate the target t, the
probability assigned to ct must exceed the threshold. Eval-
uating the previous impersonation attempts under this def-
inition, we found that success rates generally decreased but
remained high enough for the impersonations to be consid-
ered a real threat (see Table 2). For example, SB ’s success
rate when attempting to fool DNNB and impersonate SC

decreased from 88.00% without threshold to 75.00% when
using a threshold.

Time Complexity The DNNs we use in this work are
large, e.g., the number of connections in DNNB , the small-
est DNN, is about 3.86e8. Thus, the main overhead when
solving the optimization problem via GD is computing the
derivatives of the DNNs with respect to the input images.
For NI images used in the optimizations and NC connec-
tions in the DNN, the time complexity of each GD iteration
is O(NI ⇤NC). In practice, when using about 30 images, one
iteration of GD on a MacBook Pro (equipped with 16GB of
memory and a 2.2GHz Intel i7 CPU) takes about 52.72 sec-
onds. Hence, running the optimization up to 300 iterations
may take about 4.39 hours.

6. EXTENSION TO BLACK-BOX MODELS
So far we have examined attacks where the adversary has

access to the model she is trying to deceive. In general,
previous work on fooling ML systems has assumed knowl-
edge of the architecture of the system (see Sec. 2). In this
section we demonstrate how similar attacks can be applied
in a black-box scenario. In such a scenario, the adversary
would typically have access only to an oracle O which out-
puts a result for a given input and allows a limited number of
queries. The threat model we consider here is one in which
the adversary has access only to the oracle.
We next briefly describe a commercial FRS that we use in

our experiments (Sec. 6.1), and then describe and evaluate
preliminary attempts to carry out impersonation attacks in
a black-box setting (Sec. 6.2–6.3).

6.1 Face++: A Commercial FRS
Face++ is a cross-platform commercial state-of-the-art

FRS that is widely used by applications for facial recog-
nition, detection, tracking, and analysis [46]. It has been
shown to achieve accuracy over 97.3% on LFW [8]. Face++
allows users to upload training images and labels and trains
an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
ble classes of the image along with their confidence scores.
Face++ is marketed as“face recognition in the cloud.” Users
have no access to the internals of the training process and
the model used, nor even to a precise explanation of the
meaning of the confidence scores. Face++ is rate-limited to
50,000 free queries per month per user.
To train the Face++ model, we used the same training

data used for DNNB in Sec. 4.1 to create a 10-class FRS.

6.2 Impersonation Attacks on Face++
The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
several images. Therefore, in this section we focus on the
problem of impersonation from a given source to a target .

Beyond images

• Text
• Audio
• Video
• Software

Preserving semantics

C misclassifies x’

Formulation as optimization problem

