## Adversarial examples (black-box)

Neil Gong

Slides credit: part of the slides were adapted from Xiaoyu Cao

#### Black-box attacks

• The attacker does not have access to the model parameters  $\theta$ .

#### Attacker's goal

- Given C, x and t, find x' such that C(x') = t.
- x'should be semantically the same as x.
  - Approximation:  $||x' x||_p$  should be small.
- The cost should be acceptable
  - The number of queries to the prediction API should be small.
  - The computational cost should be limited.

#### Idea 1

- Learn a surrogate model C' and rely on the transferability of adversarial examples.
  - Surrogate model: a model learnt to mimic the target model, when the target model is not directly available.
  - Transferability: the ability of an adversarial example x' generated against C' transfering to C, i.e., x' is also an adversarial example against C.

#### Idea 2

- Zeroth-order optimization
  - Optimizing an objective function f based only on access to function values f(x).
  - Gradient estimation methods.
  - Trial-and-error methods.

#### Two ideas of black-box attacks

• Surrogate model based methods

• Zeroth-order optimization methods

### Surrogate model based methods



- Classification boundary
  - A classifier can be uniquely identified by its classification boundary.
- Assumption
  - Different classifiers have similar classification boundary.
- However, the classification boundary for neural networks are too complicated to theoretically analyze.

#### Increase the probability of transfer

- Find adversarial examples that transfer to more surrogate classifiers.
  - It is more likely that such adversarial examples can transfer to the target classifier.
  - Paper: Delving into Transferable Adversarial Examples and Black-box Attacks
- Learn a surrogate model that better approximate the classification boundary of the target model.
  - Paper: Practical Black-Box Attacks against Machine Learning

#### Delving into Transferable Adversarial Examples and Black-box Attacks

#### • Threat model

- The attacker has some training data.
- The attacker can learn multiple surrogate models.
- Discovery: naïve transfer is not effective

|            | RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet |
|------------|------|------------|------------|-----------|--------|-----------|
| ResNet-152 | 1.25 | 0%         | 86%        | 87%       | 93%    | 96%       |
| ResNet-101 | 1.24 | 84%        | 0%         | 93%       | 95%    | 100%      |
| ResNet-50  | 1.21 | 90%        | 91%        | 0%        | 91%    | 97%       |
| VGG-16     | 1.55 | 89%        | 94%        | 92%       | 0%     | 84%       |
| GoogLeNet  | 1.27 | 94%        | 97%        | 98%       | 91%    | 0%        |

#### Ensemble-based transfer attack

- Train multiple surrogate models.
- If an adversarial example transfers to all the surrogate models, then w.h.p. it can also transfer to the target model.
- Given k surrogate models  $C_1, ..., C_k$ , an initial example x, a target label t and a target classifier C

$$\min_{x'} L(C_1(x'), ..., C_k(x'); t) + \lambda d(x', x)$$

#### Ensemble-based transfer attack

|             | RMSD  | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet |
|-------------|-------|------------|------------|-----------|--------|-----------|
| -ResNet-152 | 17.17 | 0%         | 0%         | 0%        | 0%     | 0%        |
| -ResNet-101 | 17.25 | 0%         | 1%         | 0%        | 0%     | 0%        |
| -ResNet-50  | 17.25 | 0%         | 0%         | 2%        | 0%     | 0%        |
| -VGG-16     | 17.80 | 0%         | 0%         | 0%        | 6%     | 0%        |
| -GoogLeNet  | 17.41 | 0%         | 0%         | 0%        | 0%     | 5%        |

#### Ensemble-based transfer attack

- Strength
  - No need to query.
  - The generated adversarial examples are applicable to any target classifier.
- Weakness
  - There is no theoretical guarantee on the transferability.
    - The success rate for targeted attacks is not as good as untargeted attacks.

## Practical Black-Box Attacks against Machine Learning

- Threat model
  - The attacker feeds synthetic data points x into C and fetch the output label y.
  - The attacker can train a surrogate model using (x, y).

- Learn a surrogate model that better approximates the local classification boundary of the target classifier.
  - Iterative methods.

#### Surrogate model Training



#### Practical black-box attack

- Strength
  - The trained surrogate model can be used to generate future adversarial examples. No further queries are needed.
- Weakness
  - If we only care about few adversarial examples, the cost is huge a lot of queries and training.
  - No theoretical guarantee on transferability.

#### Zeroth-order optimization

- Threat model
  - The attacker queries the target classifier for some output, which can be either a label y or a probability vector p.

- General approaches
  - Gradient estimation
  - Trial and error

#### Gradient estimation

Black-box Adversarial Attacks with Limited Queries and Information

- In the white-box setting, the attacker solves an optimization problem to generate adversarial examples.
- They use first-order optimization methods, i.e., the derivative is known.
- However, in the black-box setting, we cannot directly obtain the gradients.

# Natural Evolution Strategies (NES) gradient estimation

Algorithm 1 NES Gradient Estimate

**Input:** Classifier P(y|x) for class y, image x **Output:** Estimate of  $\nabla P(y|x)$ **Parameters:** Search variance  $\sigma$ , number of samples n, image dimensionality N $g \leftarrow \mathbf{0}_n$ for i = 1 to n do  $u_i \leftarrow \mathcal{N}(\mathbf{0}_N, \boldsymbol{I}_{N \cdot N})$  $q \leftarrow q + P(y|x + \sigma \cdot u_i) \cdot u_i$  $q \leftarrow q - P(y|x - \sigma \cdot u_i) \cdot u_i$ end for return  $\frac{1}{2n\sigma}g$ 

#### Gradient estimation methods

- Strength
  - Query-efficient when the number of adversarial examples is small.
  - Builds a bridge between white-box and black-box attacks. With the estimated gradients, one can apply any white-box technics.
- Weakness
  - Needs access to the probability vector. If only a predicted label is available, there is a solution but the attack becomes less efficient.
  - When a lot of adversarial examples are needed, it becomes costly.

### Trial-and-error methods

Simple Black-box Adversarial Attacks

Algorithm 1 SimBA in Pseudocode 1: procedure SIMBA( $\mathbf{x}, y, Q, \epsilon$ ) 2:  $\delta = \mathbf{0}$  $\mathbf{p} = p_h(y \mid \mathbf{x})$ 3: 4: while  $\mathbf{p}_y = \max_{y'} \mathbf{p}_{y'} \mathbf{do}$ orthonormal candidate vectors Pick randomly without replacement:  $\mathbf{q} \in Q$ 5: for  $\alpha \in {\epsilon, -\epsilon}$  do 6:  $\mathbf{p}' = p_h(y \mid \mathbf{x} + \delta + \alpha \mathbf{q})$ 7: if  $\mathbf{p}'_y < \mathbf{p}_y$  then 8:  $\delta = \delta + \alpha \mathbf{q}$ 9:  $\mathbf{p} = \mathbf{p}'$ 10: break 11: return d

#### SimBA

- Strength
  - Query-efficient when the number of adversarial examples is small.
  - Simple but effective.
- Weakness
  - Needs access to the probability vector.
  - When a lot of adversarial examples are needed, it becomes costly.

#### Combination of both

HopSkipJumpAttack: A Query-Efficient Decision-Based Attack

- Combines trial-and-error and gradient estimation.
- An improved version of Boundary Attack.
  - *HopSkipJumpAttack* was called *Boundary Attack* ++ in the early version.
- What is Boundary Attack?

#### Boundary Attack

- Essentially a trial-and-error method.
- Different from other methods of the same type.
  - Starts from an initial example with the target label.
  - Iteratively move towards the input example along the decision boundary, until the distance to the input example does not decrease.

### Boundary attack





#### HopSkipJumpAttack

- Strength
  - Query-efficient when the number of adversarial examples is small.
  - Only needs access to the predicted labels.
  - Theoretical analysis on the gradient estimation.
- Weakness
  - When a lot of adversarial examples are needed, it becomes costly.

#### Question

