Defenses Against Adversarial Examples

Neil Gong

Defending against adversarial examples

- General philosophy for security solutions
 - Prevention
 - Detection
 - Response
- Prevention
 - robust classifiers
- Detection
 - detecting adversarial examples
- Response
 - manual labeling?
 - collecting more data?

Detecting adversarial examples

- Binary classification
 - Normal example vs. adversarial example
- Add one more label "adversarial"
 - E.g., 0, 1, 2, ..., 9, adversarial
- Extracting features and building detectors

Challenges of detecting adversarial examples

Attackers are adaptive

Evaluating a detection method

Evaluating a detection method

- Metric 1
 - Whether human perceives x" and x as the same
 - no-> Detection is effective
 - Hard to implement
- Metric 2
 - d(x',x) vs. d(x'', x)
 - d(x'', x) > d(x',x) -> detection is effective
 - d(x'', x) d(x',x) measures effectiveness
 - Consider strong adaptive attacks

Response

- Manual labeling
- Collecting more data
 - Other sensor data

Prevention – robust classifiers

- Empirically robust classifier
 - A particular attack cannot find adversarial example within a L_p norm ball
 - (p, ε) -robust against an attack for x, if the attack does not find adversarial perturbation whose L_p norm is no larger than ε .
- Certifiably robust classifier
 - No adversarial examples exist within a L_p norm ball.
 - (p, ε) -certifiably robust for x, if no adversarial perturbation whose L_p norm is no larger than ε exists.

Training empirically robust classifier

Adversarial training

Adversarial training

$$\min_{\theta} \sum_{(x,y)} \max_{\delta \in B_p(x,\varepsilon)} L(x+\delta, y|\theta)$$

- Alternate between max and min
- Inner max
 - Finding adversarial perturbation δ , e.g., Projected Gradient Descent (PGD)
- Outer min
 - Updating model parameters θ using both normal and adversarial examples

Issues of adversarial training

- No certifiable guarantee
- May not be empirically robust against unseen attacks
 - Use multiple attacks during training
- May not be robust to perturbation larger than ε used in training

DBA: decision boundary attack

(a) MNIST, ℓ_{∞} -norm

Evaluating an empirically robust classifier

Evaluating an empirically robust classifier

- Metric 1
 - Whether human perceives x" and x as the same
 - no-> defense is effective
 - Hard to implement
- Metric 2
 - d(x',x) vs. d(x'', x)
 - d(x'', x) > d(x',x) -> defense is effective
 - d(x'', x) d(x',x) measures effectiveness
 - Consider strong adaptive attacks