Defenses Against Adversarial Examples

Neil Gong

Certifiably robust classifier

- A classifier is (p, ε) -certifiably robust for x, if no adversarial perturbation whose L_p norm is no larger than ε exists.
- Verification
 - Given a classifier and x, verify whether the classifier is (p, ε) -certifiably robust for x
- Certification
 - Given a classifier and x, deriving p and ε

Verification via interval analysis

- Given x, $p=\infty$, ε , we propagate the intervals from the input to the output
- Limitations
 - False negatives
 - Limited to $p=\infty$
 - Not effective for certain classifiers

Certification via randomized smoothing

• Given a classifier and x, deriving p and ε

- Many methods have been developed
- Randomized smoothing
 - Applicable to any classifier
 - Scalable to large neural networks

Adversarial example is close to classification boundary?

Measuring Adversarial Examples

A normal example: digit 0

An adversarial example with a target label 9

Randomized smoothing

Formal definition of randomized smoothing

- Input
 - a classifier f
 - an example x
 - a noise distribution
- Output

•
$$g(x) = \underset{c}{\operatorname{argmax}} \Pr(f(x+r) = c)$$

Deriving (p, ε)

• Noise is isotropic Gaussian distribution

•
$$g(x + \delta) = C_A$$
 when $|\delta|_2 \le \varepsilon$

$$\varepsilon = \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right)$$

Certified radius

Tightness of the bound

- Given
 - No assumptions on the classifier f
 - Randomized smoothing with Gaussian noise
- The derived bound is tight

Estimating the label probabilities

- Sampling a large number of noise
- Predicting labels for the noisy examples
- Estimating label probabilities with probabilistic guarantees

Generalization to top-k

- Input
 - a classifier f
 - an example x
 - a noise distribution
- Output
 - $p_c = \Pr(f(x+r) = c)$
 - The smoothed classifier predicts k labels with the largest label probabilities
- A label is among the top-k labels if the adversarial perturbation is bounded

Certified Robustness for Top-k Predictions against Adversarial Perturbations via Randomized Smoothing

Training to improve certified accuracy

- Adding random noise during training
- Adding certified radius as a regularization term

$$\underbrace{\mathbf{1}_{\{g_{\theta}(x)\neq y\}}}_{\text{O/1 Classification Error}} + \underbrace{\mathbf{1}_{\{g_{\theta}(x)=y,CR(g_{\theta};x,y)<\epsilon\}}}_{\text{O/1 Robustness Error}}$$

MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius

Randomized smoothing

- Strengths
 - Applicable to any classifier
 - Scalable to large classifier
- Limitations
 - Efficiency need many predictions
 - Probabilistic guarantees