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Certifiably robust classifier

• A	classifier	is	(,, .)-certifiably robust for x, if no adversarial perturbation whose 
L_p norm is no larger than . exists.

• Verification 
• Given a classifier and x, verify whether the classifier is (,, .)-certifiably robust for x

• Certification
• Given a classifier and x, deriving , and .



Verification via interval analysis

• Given x, p=∞, ", we propagate the intervals from the input to the 
output

• Limitations
• False negatives
• Limited to p=∞
• Not effective for certain classifiers



Certification via randomized smoothing

• Given a classifier and x, deriving ! and "

•Many methods have been developed

• Randomized smoothing
• Applicable to any classifier
• Scalable to large neural networks
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Measuring Adversarial Examples  
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Fig. 1. Adversarial examples generated by an evasion a�ack proposed by Carlini andWagner [? ].

processing [? ], and playing games [? ]. For instance, DNNs can recognize images with accuracies
that are comparable to human [? ]; and they can outperform the best human Go players [? ].

However, researchers in various communities–such as security, machine learning, and computer
vision–have demonstrated that DNNs are vulnerable to a�acks at testing time [? ? ? ? ? ? ? ]. For
instance, in image recognition, an a�acker can add a small noise to a testing example such that the
example is misclassi�ed by a DNN classi�er. �e testing example with noise is called adversarial
example [? ]. In contrast, the original example is called benign example. Usually, the noise is
so small such that, to human, the benign example and adversarial example still have the same
label. Figure 1 shows some adversarial examples for digit recognition in the MNIST dataset. �e
adversarial examples were generated by the state-of-the-art evasion a�acks proposed by Carlini
and Wagner [? ]. We use the same DNN classi�er as the one used by them. �e examples in the ith
row have true label i , while the examples in the jth column are predicted to have label j by the
DNN classi�er, where i, j = 0, 1, · · · , 9.
Evasion a�acks limit the use of DNNs in safety and security critical applications such as self-

driving cars. �e adversarial examples can make self-driving cars make unwanted decisions. For
instance, one basic capability of self-driving cars is to automatically recognize stop signs and
tra�c lights. Suppose an adversary creates an adversarial stop sign, i.e., the adversary adds several
human-imperceptible dots to a stop sign, such that the self-driving car does not recognize it as a
stop sign. As a result, self-driving cars will not stop at the stop sign and may collide with other
cars, resulting in severe tra�c accidents.

To defend against evasion a�acks, Goodfellow et al. [? ] proposed to train a DNN via augmenting
the training dataset with adversarial examples, which is known as adversarial training. Speci�cally,
for each training benign example, the learner generates a training adversarial example using evasion
a�acks. �en, the learner uses a standard algorithm (e.g., back propagation) to learn a DNN using
the original training benign examples and the corresponding adversarial examples. Adversarial
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Randomized smoothing
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Formal definition of randomized smoothing

• Input
• a classifier f
• an example x
• a noise distribution

• Output
• g(#) = argmax

*
Pr(, # + . = /)



Deriving (", $)
• Noise is isotropic Gaussian distribution

• g ' + ) = +, when |)|. ≤ ℇ

Certified Adversarial Robustness via Randomized Smoothing

to return when x is perturbed by isotropic Gaussian noise:

g(x) = argmax
c2Y

P(f(x+ ") = c) (1)

where " ⇠ N (0,�2I)

An equivalent definition is that g(x) returns the class c
whose pre-image {x0 2 Rd : f(x0) = c} has the largest
probability measure under the distribution N (x,�2I). The
noise level � is a hyperparameter of the smoothed classifier
g which controls a robustness/accuracy tradeoff; it does not
change with the input x. We leave undefined the behavior
of g when the argmax is not unique.

We will first present our robustness guarantee for the
smoothed classifier g. Then, since it is not possible to
exactly evaluate the prediction of g at x or to certify the ro-
bustness of g around x, we will give Monte Carlo algorithms
for both tasks that succeed with arbitrarily high probability.

3.1. Robustness guarantee

Suppose that when the base classifier f classifies N (x,�2I),
the most probable class cA is returned with probability pA,
and the “runner-up” class is returned with probability pB .
Our main result is that smoothed classifier g is robust around
x within the `2 radius R = �

2 (�
�1(pA)���1(pB)), where

��1 is the inverse of the standard Gaussian CDF. This result
also holds if we replace pA with a lower bound pA and we
replace pB with an upper bound pB .

Theorem 1. Let f : Rd ! Y be any deterministic or

random function, and let " ⇠ N (0,�2I). Let g be defined

as in (1). Suppose cA 2 Y and pA, pB 2 [0, 1] satisfy:

P(f(x+ ") = cA) � pA � pB � max
c 6=cA

P(f(x+ ") = c) (2)

Then g(x+ �) = cA for all k�k2 < R, where

R =
�

2
(��1(pA)� ��1(pB)) (3)

We now make several observations about Theorem 1:

• Theorem 1 assumes nothing about f . This is crucial
since it is unclear which well-behavedness assump-
tions, if any, are satisfied by modern deep architectures.

• The certified radius R is large when: (1) the noise level
� is high, (2) the probability of the top class cA is high,
and (3) the probability of each other class is low.

• The certified radius R goes to 1 as pA ! 1 and
pB ! 0. This should sound reasonable: the Gaussian
distribution is supported on all of Rd, so the only way
that f(x + ") = cA with probability 1 is if f = cA
almost everywhere.

Both Lecuyer et al. (2019) and Li et al. (2018) proved `2
robustness guarantees for the same setting as Theorem 1, but
with different, smaller expressions for the certified radius.
However, our `2 robustness guarantee is tight: if (2) is all
that is known about f , then it is impossible to certify an `2
ball with radius larger than R. In fact, it is impossible to
certify any superset of the `2 ball with radius R:

Theorem 2. Assume pA + pB  1. For any perturbation

� with k�k2 > R, there exists a base classifier f consistent

with the class probabilities (2) for which g(x+ �) 6= cA.

Theorem 2 shows that Gaussian smoothing naturally in-
duces `2 robustness: if we make no assumptions on the base
classifier beyond the class probabilities (2), then the set of
perturbations to which a Gaussian-smoothed classifier is
provably robust is exactly an `2 ball.

The complete proofs of Theorems 1 and 2 are in Appendix
A. We now sketch the proofs in the special case when there
are only two classes.

Theorem 1 (binary case). Suppose pA 2 ( 12 , 1] satisfies

P(f(x + ") = cA) � pA. Then g(x + �) = cA for all

k�k2 < ���1(pA).

Proof sketch. Fix a perturbation � 2 Rd. To guarantee
that g(x + �) = cA, we need to show that f classifies the
translated Gaussian N (x + �,�2I) as cA with probability
> 1

2 . However, all we know about f is that f classifies
N (x,�2I) as cA with probability � pA. This raises the
question: out of all possible base classifiers f which classify
N (x,�2I) as cA with probability � pA, which one f⇤

classifies N (x+�,�2I) as cA with the smallest probability?
One can show using an argument similar to the Neyman-
Pearson lemma (Neyman & Pearson, 1933) that this “worst-
case” f⇤ is a linear classifier whose decision boundary is
normal to the perturbation � (Figure 3):

f⇤(x0) =

(
cA if �T (x0 � x)  �k�k2��1(pA)

cB otherwise
(4)

This “worst-case” f⇤ classifies N (x + �,�2I) as cA with
probability �

⇣
��1(pA)� k�k2

�

⌘
. Therefore, to ensure that

even the “worst-case” f⇤ classifies N (x+�,�2I) as cA with
probability > 1

2 , we solve for those � for which

�

✓
��1(pA)�

k�k2
�

◆
>

1

2

which is equivalent to the condition k�k2 < ���1(pA).

Theorem 2 is a simple consequence: for any � with k�k2 >
R, the base classifier f⇤ defined in (4) is consistent with (2);
yet if f⇤ is the base classifier, then g(x+ �) = cB .

ℇ=

Certified radius



Tightness of the bound

• Given
• No assumptions on the classifier f
• Randomized smoothing with Gaussian noise

• The derived bound is tight



Estimating the label probabilities 

• Sampling a large number of noise

• Predicting labels for the noisy examples

• Estimating label probabilities with probabilistic guarantees



Generalization to top-k

• Input
• a classifier f
• an example x
• a noise distribution

• Output
• !" = Pr & ' + ) = *
• The smoothed classifier predicts k labels with the largest label probabilities

• A label is among the top-k labels if the adversarial perturbation is 
bounded

Certified Robustness for Top-k Predictions against Adversarial Perturbations via Randomized Smoothing



Training to improve certified accuracy 

• Adding random noise during training

• Adding certified radius as a regularization term

Published as a conference paper at ICLR 2020

• g✓(x) 6= y, i.e. the classifier misclassifies x.
• g✓(x) = y, but CR(g✓;x, y) < ✏, i.e. the classifier is correct but not robust enough.

Thus, the 0/1 certified robust error can be decomposed as the sum of two error terms: a 0/1 classifi-
cation error and a 0/1 robustness error:

l0/1✏�certified(g✓;x, y) = 1� 1{CR(g✓;x,y)�✏}

= 1{g✓(x) 6=y}| {z }
0/1 Classification Error

+1{g✓(x)=y,CR(g✓;x,y)<✏}| {z }
0/1 Robustness Error

(9)

4.1 DESIDERATA FOR OBJECTIVE FUNCTIONS

Minimizing the 0-1 error directly is intractable. A classic method is to minimize a surrogate loss
instead. The surrogate loss for the 0/1 classification error is called classification loss and denoted by
lC(g✓;x, y). The surrogate loss for the 0/1 robustness error is called robustness loss and denoted by
lR(g✓;x, y). Our final objective function is

l(g✓;x, y) = lC(g✓;x, y) + lR(g✓;x, y) (10)

We would like our loss functions lC(g✓;x, y) and lR(g✓;x, y) to satisfy some favorable conditions.
These conditions are summarized below as (C1) - (C3):

• (C1) (Surrogate condition): Surrogate loss should be an upper bound of the original er-
ror function, i.e. lC(g✓;x, y) and lR(g✓;x, y) should be upper bounds of 1{g✓(x) 6=y} and
1{g✓(x)=y,CR(g✓;x,y)<✏}, respectively.

• (C2) (Differentiablity): lC(g✓;x, y) and lR(g✓;x, y) should be (sub-)differentiable with
respect to ✓.

• (C3) (Numerical stability): The computation of lC(g✓;x, y) and lR(g✓;x, y) and their (sub-
)gradients with respect to ✓ should be numerically stable.

The surrogate condition (C1) ensures that l(g✓;x, y) itself meets the surrogate condition, i.e.

l(g✓;x, y) = lC(g✓;x, y) + lR(g✓;x, y) � l0/1✏�certified(g✓;x, y) (11)

Conditions (C2) and (C3) ensure that (10) can be stably minimized with first order methods.

4.2 SURROGATE LOSSES (FOR CONDITION C1)

We next discuss choices of the surrogate losses that ensure we satisfy condition (C1). The classifi-
cation surrogate loss is relatively easy to design. There are many widely used loss functions from
which we can choose, and in this work we choose the cross-entropy loss as the classification loss:

1{g✓(x) 6=y}  lC(g✓;x, y) := lCE(g✓(x), y) (12)

For the robustness surrogate loss, we choose the hinge loss on the certified radius:

1{g✓(x)=y,CR(g✓;x,y)<✏}

 � ·max {✏+ ✏̃� CR(g✓;x, y), 0} · 1{g✓(x)=y} := lR(g✓;x, y)
(13)

where ✏̃ > 0 and � � 1
✏̃ . We use the hinge loss because not only does it satisfy the surrogate

condition, but also it is numerically stable, which we will discuss in Section 4.4.

4.3 DIFFERENTIABLE CERTIFIED RADIUS VIA SOFT RANDOMIZED SMOOTHING (FOR
CONDITION C2)

The classification surrogate loss in (12) is differentiable with respect to ✓, but the differentiability
of the robustness surrogate loss in (13) requires differentiability of CR(g✓;x, y). In this section we
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MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius



Randomized smoothing

• Strengths
• Applicable to any classifier
• Scalable to large classifier

• Limitations
• Efficiency – need many predictions
• Probabilistic guarantees


