Security for Recommender Systems

Some slides are from Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich

Introduction

Why recommender systems

- Addressing information overload
- Match users with items

Categories

- Collaborative filtering
- Content based
- Hybrid

Collaborative Filtering (CF)

The most prominent approach to generate recommendations

- used by large, commercial websites
- well-understood, various algorithms and variations exist
- applicable in many domains (book, movies, DVDs, ..)

Approach

- use the "wisdom of the crowd" to recommend items
- Basic assumption and idea

- Users give ratings to items (implicitly or explicitly)
- Customers who had similar tastes in the past, will have similar tastes in the future

Problem setup

Input

- Only a matrix of given user-item ratings

Output types

- A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
- A top-N list of recommended items

Explicit ratings

- Probably the most precise ratings
- Most commonly used : 1 to 5
- Main problems
 - Users not always willing to rate many items
 - number of available ratings could be too small → sparse rating matrices → poor recommendation quality

Implicit ratings

- Typically collected by the web service or application in which the recommender system is embedded
- When a customer buys an item, for instance, many recommender systems interpret this behavior as a positive rating
- Clicks, page views, time spent on some page, demo downloads ...
- Implicit ratings can be collected constantly and do not require additional efforts from the side of the user
- Main problem
 - One cannot be sure whether the user behavior is correctly interpreted
 - For example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else

Collaborative Filtering Approaches

- User-based nearest-neighbor
- Item-based nearest-neighbor
- Graph-based
- Matrix factorization
- Association Rule Mining
- Neural network

User-based nearest-neighbor collaborative filtering (1)

The basic technique

- Given an "active user" (Alice) and an item i not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated

Basic assumption and idea

- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time

User-based nearest-neighbor collaborative filtering (2)

• Example

- A database of ratings of the current user, Alice, and some other users is given:

	ltem1	ltem2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Determine whether Alice will like or dislike *Item5*, which Alice has not yet rated or seen

User-based nearest-neighbor collaborative filtering (3)

Some first questions

- How do we measure similarity?
- How many neighbors should we consider?
- How do we generate a prediction from the neighbors' ratings?

	ltem1	ltem2	ltem3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity (1)

A popular similarity measure in user-based CF: Pearson correlation

- a, b : users
- $r_{a,p}$: rating of user a for item p
- *P* : set of items, rated both by *a* and *b*
- Possible similarity values between -1 and 1

Measuring user similarity (2)

• A popular similarity measure in user-based CF: Pearson correlation

- a, b : users
- $r_{a,p}$: rating of user a for item p
- *P* : set of items, rated both by *a* and *b*
- Possible similarity values between -1 and 1

	ltem1	ltem2	ltem3	ltem4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim = 0,85
User2	4	3	4	3	5	sim = 0,00
User3	3	3	1	5	4	sim = 0,70
User4	1	5	5	2	1	sim = -0,79

Making predictions

• A common prediction function:

$$pred(a, p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a, b) * (r_{b, p} - \overline{r_b})}{\sum_{b \in N} sim(a, b)}$$

- Calculate, whether the neighbors' ratings for the unseen item *i* are higher or lower than their average
- Combine the rating differences use the similarity with *a* as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Item-based collaborative filtering

Basic idea:

- Use the similarity between items (and not users) to make predictions

Example:

- Look for items that are similar to Item5
- Take Alice's ratings for these items to predict the rating for Item5

	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

The cosine similarity measure

- Produces better results in item-to-item filtering
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

$$sim(\vec{a},\vec{b}) = rac{\vec{a}\cdot\vec{b}}{|\vec{a}|*|\vec{b}|}$$

- Adjusted cosine similarity
 - take average user ratings into account, transform the original ratings
 - U: set of users who have rated both items a and b

Making predictions

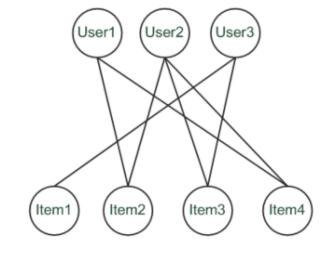
• A common prediction function:

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction
- An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)

Graph-based methods

- Use graph to model user-item interactions
- Compute graph-based similarity scores



Matrix factorization

 Informally, the SVD theorem (Golub and Kahan 1965) states that a given matrix M can be decomposed into a product of three matrices as follows

$$M = U \times \Sigma \times V^{T}$$

- where U and V are called *left* and *right singular vectors* and the values of the diagonal of Σ are called the *singular values*
- We can approximate the full matrix by observing only the most important features – those with the largest singular values

Example for SVD-based recommendation

• SVD:	M_k	$=U_k$	$\times \Sigma_k \times V_k^T$	Ter Ter	rminator	Die Hard	Fat	- pray Love	HAITN POLITET
U _k	Dim1	Dim2		V_k^T				Ve	<u>a</u> r
Alice	0.47	-0.30		Dim1	-0.44	-0.57	0.06	0.38	0.57
Bob	-0.44	0.23		Dim2	0.58	-0.66	0.26	0.18	-0.36
Mary	0.70	-0.06							
Sue	0.31	0.93					Σ_k	Dim1	Dim2

• Prediction:
$$\hat{r}_{ui} = \bar{r}_u + U_k (Alice) \times \Sigma_k \times V_k^T (EPL)$$

= 3 + 0.84 = 3.84 Dim2 0 3.23

Threat model for poisoning attacks

Attacker's goal

- Individuals may be interested to push some items by manipulating the recommender system
- Individuals might be interested to decrease the rank of competitors' items
- Some simply might may want to sabotage the system ..
- Manipulation of the "Internet opinion"

Attacker's background knowledge

- Complete/partial user-item rating matrix
- Recommendation algorithm

Attacker's capability

- (Automatically) create numerous fake accounts / profiles

Different names

- Shilling attacks
- Poisoning attacks

Key challenge

- How to craft rating scores for the fake accounts
- Not detected

- Pearson correlation as similarity measure
- Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	ltem1	ltem2	ltem3	ltem4	 Target	Pearson
Alice	5	3	4	1	 ?	
User1	3	1	2	5	 5	-0.54
User2	4	3	3	3	 2	0.68
User3	3	3	1	5	 4	-0.72
User4	1	5	5	2	 1	-0.02

- Pearson correlation as similarity measure
- Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	ltem1	ltem2	Item3	Item4	 Target	Pearson	
Alice	5	3	4	1	 ?		
User1	3	1	2	5	 5	-0.54	
User2	4	3	3	3	 2	0.68	← User2 most similar to Alice
User3	3	3	1	5	 4	-0.72	
User4	1	5	5	2	 1	-0.02	

- Pearson correlation as similarity measure
- Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	ltem1	ltem2	Item3	Item4	 Target	Pearson	
Alice	5	3	4	1	 ?		
User1	3	1	2	5	 5	-0.54	
User2	4	3	3	3	 2	0.68	← User2 most similar to Alice
User3	3	3	1	5	 4	-0.72	S Attack
User4	1	5	5	2	 1	-0.02	
Attack	5	3	4	3	 5	0.87	

- Pearson correlation as similarity measure
- Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	ltem1	ltem2	Item3	Item4	 Target	Pearson	
Alice	5	3	4	1	 ?		
User1	3	1	2	5	 5	-0.54	
User2	4	3	3	3	 2		← User2 most similar to Alice
User3	3	3	1	5	 4	-0.72	Attack
User4	1	5	5	2	 1	-0.02	
Attack	5	3	4	3	 5	0.87	← Attack most similar to Alice

Algorithm-independent attacks: The Random Attack

General scheme of an attack profile

ltem1	•••	ItemL	•••	ItemN	Target
r_1		r_l		r_n	Х
fil	ller iter	ns	ur	nrated items	

- Attack models mainly differ in the way the profile sections are filled

Random attack model

- Take random values for filler items
 - Typical distribution of ratings is known, e.g., for the movie domain (Average 3.6, standard deviation around 1.1)
- Idea:
 - generate profiles with "typical" ratings so they are considered as neighbors to many other real profiles
- High/low ratings for target items
- Limited effect compared with more advanced models

Algorithm-independent attacks: The Average Attack

- use the individual item's rating average for the filler items
- intuitively, there should be more neighbors
- additional cost involved: find out the average rating of an item

Algorithm-dependent attacks

- Formulating as a bi-level optimization problem
- Objective: maximizing #users the target item is recommended to
- Constraints
 - n fake users
 - Each user rates m filler items
 - Recommendation is calculated by a specific algorithm