
- 1 -

Some slides are from Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich

- 2 -

Introduction

§ Why recommender systems
– Addressing information overload
– Match users with items

§ Categories
– Collaborative filtering
– Content based
– Hybrid

- 3 -

Collaborative Filtering (CF)

§ The most prominent approach to generate recommendations
– used by large, commercial websites
– well-understood, various algorithms and variations exist
– applicable in many domains (book, movies, DVDs, ..)

§ Approach
– use the "wisdom of the crowd" to recommend items

§ Basic assumption and idea
– Users give ratings to items (implicitly or explicitly)
– Customers who had similar tastes in the past, will have similar tastes in the

future

- 4 -

Problem setup

§ Input
– Only a matrix of given user–item ratings

§ Output types
– A (numerical) prediction indicating to what degree the current user will like or

dislike a certain item
– A top-N list of recommended items

- 5 -

Explicit ratings

§ Probably the most precise ratings

§ Most commonly used : 1 to 5

§ Main problems
– Users not always willing to rate many items

§ number of available ratings could be too small → sparse rating matrices → poor recommendation
quality

- 6 -

Implicit ratings

§ Typically collected by the web service or application in which the recommender
system is embedded

§ When a customer buys an item, for instance, many recommender systems interpret
this behavior as a positive rating

§ Clicks, page views, time spent on some page, demo downloads …

§ Implicit ratings can be collected constantly and do not require additional efforts from
the side of the user

§ Main problem
– One cannot be sure whether the user behavior is correctly interpreted
– For example, a user might not like all the books he or she has bought; the user also might

have bought a book for someone else

- 7 -

Collaborative Filtering Approaches

– User-based nearest-neighbor
– Item-based nearest-neighbor
– Graph-based
– Matrix factorization
– Association Rule Mining
– Neural network

- 8 -

User-based nearest-neighbor collaborative filtering (1)

§ The basic technique
– Given an "active user" (Alice) and an item ! not yet seen by Alice

§ find a set of users (peers/nearest neighbors) who liked the same items as Alice
in the past and who have rated item !

§ use, e.g. the average of their ratings to predict, if Alice will like item !
§ do this for all items Alice has not seen and recommend the best-rated

§ Basic assumption and idea
– If users had similar tastes in the past they will have similar tastes in the future
– User preferences remain stable and consistent over time

- 9 -

User-based nearest-neighbor collaborative filtering (2)

§ Example
– A database of ratings of the current user, Alice, and some other users is given:

– Determine whether Alice will like or dislike Item5, which Alice has not yet
rated or seen

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

- 10 -

User-based nearest-neighbor collaborative filtering (3)

§ Some first questions
– How do we measure similarity?
– How many neighbors should we consider?
– How do we generate a prediction from the neighbors' ratings?

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

- 11 -

Measuring user similarity (1)

§ A popular similarity measure in user-based CF: Pearson correlation
!, " : users
#$,& : rating of user ! for item '
(: set of items, rated both by ! and "

– Possible similarity values between −1 and 1

- 12 -

Measuring user similarity (2)

§ A popular similarity measure in user-based CF: Pearson correlation
!, " : users
#$,& : rating of user ! for item '
(: set of items, rated both by ! and "

– Possible similarity values between −1 and 1

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0,85
sim = 0,00
sim = 0,70
sim = -0,79

- 13 -

Making predictions

§ A common prediction function:

§ Calculate, whether the neighbors' ratings for the unseen item ! are higher
or lower than their average

§ Combine the rating differences – use the similarity with " as a weight

§ Add/subtract the neighbors' bias from the active user's average and use
this as a prediction

#$%& ', # = $' +
∑, ∈. /01 ', , ∗ ($,,# − $,)

∑, ∈. /01 ', ,

- 14 -

Item-based collaborative filtering

§ Basic idea:
– Use the similarity between items (and not users) to make predictions

§ Example:
– Look for items that are similar to Item5
– Take Alice's ratings for these items to predict the rating for Item5

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

- 15 -

The cosine similarity measure

§ Produces better results in item-to-item filtering

§ Ratings are seen as vector in n-dimensional space

§ Similarity is calculated based on the angle between the vectors

§ Adjusted cosine similarity
– take average user ratings into account, transform the original ratings
– ": set of users who have rated both items # and $

%&' (, * = (, *
(∗ |*|

- 16 -

Making predictions

§ A common prediction function:

§ Neighborhood size is typically also limited to a specific size

§ Not all neighbors are taken into account for the prediction

§ An analysis of the MovieLens dataset indicates that "in most real-world
situations, a neighborhood of 20 to 50 neighbors seems reasonable"
(Herlocker et al. 2002)

!"#$ %, ! =
∑)∈"+,#$-,#.(%) 1).), ! ∗ "%,)
∑)∈"+,#$-,#.(%) 1).), !

- 17 -

Graph-based methods

§ Use graph to model user-item interactions

§ Compute graph-based similarity scores

- 18 -

Matrix factorization

§ Informally, the SVD theorem (Golub and Kahan 1965) states that a given
matrix ! can be decomposed into a product of three matrices as follows

– where " and # are called left and right singular vectors and the values of the
diagonal of Σ are called the singular values

§ We can approximate the full matrix by observing only the most important
features – those with the largest singular values

TVUM ´S´=

- 19 -

Example for SVD-based recommendation

Vk
T

Dim1 -0.44 -0.57 0.06 0.38 0.57

Dim2 0.58 -0.66 0.26 0.18 -0.36

Uk Dim1 Dim2

Alice 0.47 -0.30

Bob -0.44 0.23

Mary 0.70 -0.06

Sue 0.31 0.93 Dim1 Dim2

Dim1 5.63 0

Dim2 0 3.23

T
kkkk VUM ´S´=

kS

• SVD:

• Prediction:
= 3 + 0.84 = 3.84

)()(ˆ EPLVAliceUrr T
kkkuui ´S´+=

Term
inator

D
ie H

ard

Tw
ins

Eat Pray Love

H
arry Potter

- 20 -

Threat model for poisoning attacks

§ Attacker’s goal
– Individuals may be interested to push some items by manipulating the recommender

system
– Individuals might be interested to decrease the rank of competitors’ items
– Some simply might may want to sabotage the system ..
– Manipulation of the "Internet opinion"

§ Attacker’s background knowledge
– Complete/partial user-item rating matrix
– Recommendation algorithm

§ Attacker’s capability
– (Automatically) create numerous fake accounts / profiles

§ Different names
– Shilling attacks
– Poisoning attacks

- 21 -

Key challenge

§ How to craft rating scores for the fake accounts

§ Not detected

- 22 -

Example attack

§ Assume that a user-based nearest neighbor is used with:
– Pearson correlation as similarity measure
– Neighborhood size of 1

§ Only opinion of most similar user will be used to make prediction

Item1 Item2 Item3 Item4 … Target Pearson

Alice 5 3 4 1 … ?

User1 3 1 2 5 … 5 -0.54

User2 4 3 3 3 … 2 0.68

User3 3 3 1 5 … 4 -0.72

User4 1 5 5 2 … 1 -0.02

- 23 -

Example attack

§ Assume that a user-based nearest neighbor is used with:
– Pearson correlation as similarity measure
– Neighborhood size of 1

§ Only opinion of most similar user will be used to make prediction

Item1 Item2 Item3 Item4 … Target Pearson

Alice 5 3 4 1 … ?

User1 3 1 2 5 … 5 -0.54

User2 4 3 3 3 … 2 0.68

User3 3 3 1 5 … 4 -0.72

User4 1 5 5 2 … 1 -0.02

User2 most similar to Alice

- 24 -

Example attack

§ Assume that a user-based nearest neighbor is used with:
– Pearson correlation as similarity measure
– Neighborhood size of 1

§ Only opinion of most similar user will be used to make prediction

User2 most similar to Alice

Attack

Item1 Item2 Item3 Item4 … Target Pearson

Alice 5 3 4 1 … ?

User1 3 1 2 5 … 5 -0.54

User2 4 3 3 3 … 2 0.68

User3 3 3 1 5 … 4 -0.72

User4 1 5 5 2 … 1 -0.02

Attack 5 3 4 3 … 5 0.87

- 25 -

Item1 Item2 Item3 Item4 … Target Pearson

Alice 5 3 4 1 … ?

User1 3 1 2 5 … 5 -0.54

User2 4 3 3 3 … 2 0.68

User3 3 3 1 5 … 4 -0.72

User4 1 5 5 2 … 1 -0.02

Attack 5 3 4 3 … 5 0.87

Example attack

§ Assume that a user-based nearest neighbor is used with:
– Pearson correlation as similarity measure
– Neighborhood size of 1

§ Only opinion of most similar user will be used to make prediction

Attack most similar to Alice

Attack

User2 most similar to Alice

- 26 -

Algorithm-independent attacks: The Random Attack

§ General scheme of an attack profile

– Attack models mainly differ in the way the profile sections are filled

§ Random attack model
– Take random values for filler items

§ Typical distribution of ratings is known, e.g., for the movie domain

(Average 3.6, standard deviation around 1.1)

– Idea:

§ generate profiles with "typical" ratings so they are considered as neighbors to many other real

profiles

– High/low ratings for target items

– Limited effect compared with more advanced models

Item1 … ItemL … ItemN Target

r_1 … r_l … r_n X

filler items unrated items

- 27 -

Algorithm-independent attacks: The Average Attack

§ use the individual item's rating average for the filler items

§ intuitively, there should be more neighbors

§ additional cost involved: find out the average rating of an item

- 28 -

Algorithm-dependent attacks

§ Formulating as a bi-level optimization problem

§ Objective: maximizing #users the target item is recommended to

§ Constraints
– n fake users
– Each user rates m filler items
– Recommendation is calculated by a specific algorithm

