ECE/COMPSCI 356 Computer Network Architecture

Lecture 2: Design Requirements

Neil Gong neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

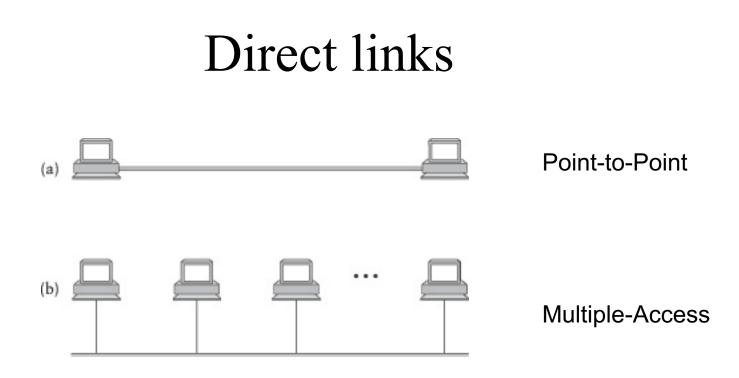
Overview

- Design requirements of a computer network
 - different applications and different communities place requirements on a computer network

Supporting diverse applications

- Most people know about the Internet (a computer network) through applications
 - Short videos
 - World Wide Web
 - Email
 - Online Social Network
 - Streaming Audio/Video
 - File Sharing
 - Instant Messaging
 - …

Different communities

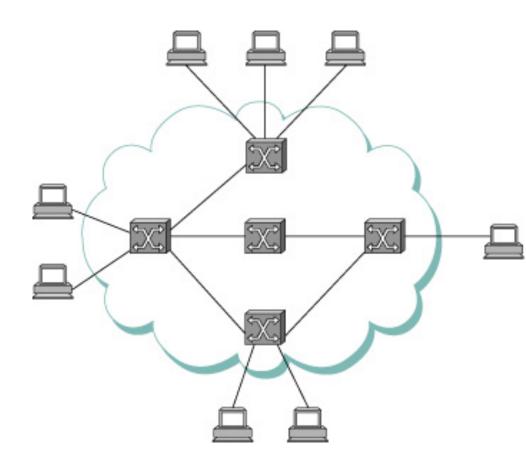

- Application Programmer
 - List the services that his application needs: delay bounded delivery of data
- Network Designer
 - Design a cost-effective network with sharable resources
- Network Provider
 - List the characteristics of a system that is easy to manage

Design requirements

- 1. Scalable connectivity
- 2. Cost-effective resource sharing
- 3. Support for common services
- 4. Manageability
- 5. Security

1. Scalable connectivity

- Scale: A system is designed to grow to an arbitrary large size is said to scale
 - How to connect an arbitrary large number of computers on a network?
- How to connect two computers
 - Direct link
 - Indirect link

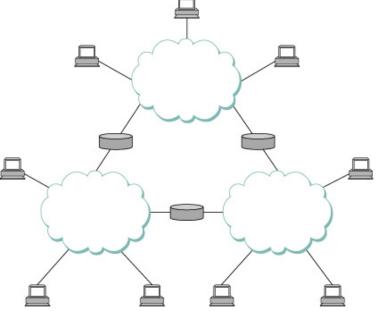

- Connect two or more computers via a physical medium or electromagnetic waves
- Computers are referred to as nodes
- The physical medium is referred to as a link

Indirect links

- Switched networks
- Interconnection of networks

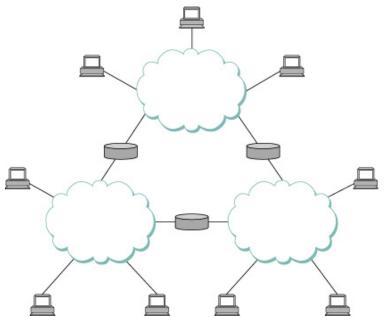
Switched networks

- Achieving indirect connectivity
- Concepts
 - Switches
 - Nodes that are attached to at least two links forward data from one link to another link
 - Hosts
 - Cloud

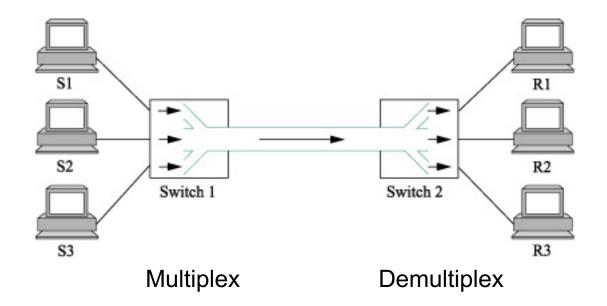


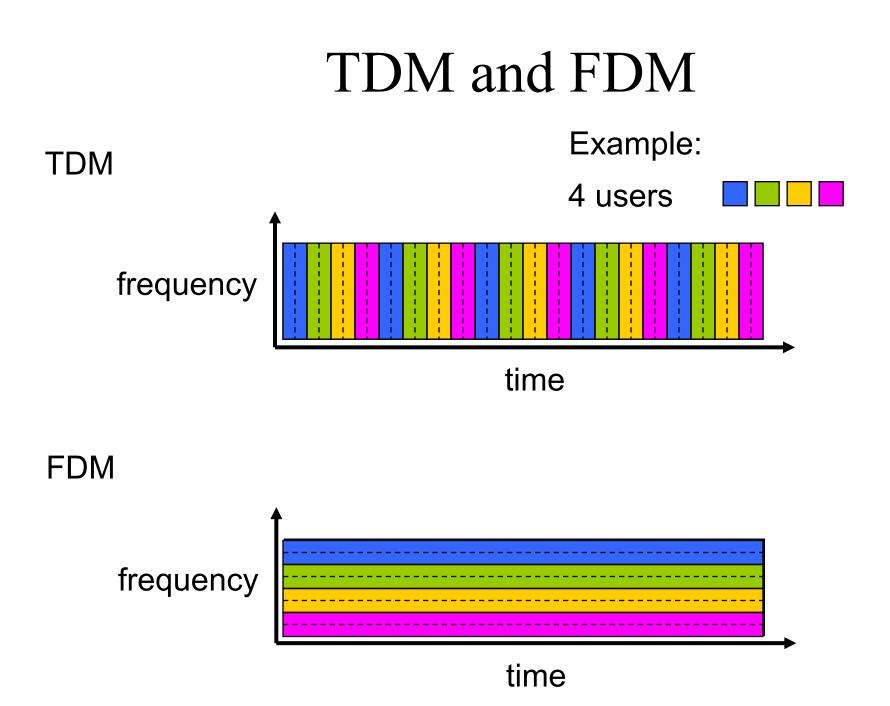
Switched networks

- Circuit switching
 - Sets up a circuit before nodes can communicate
 - Switches connect circuits on different links
- Packet switching
 - Data are split into blocks of data called packets
 - Data: message
 - Block: packet
 - Store and forward
 - Nodes send packets and switches forward them


Interconnection of networks (internetwork)

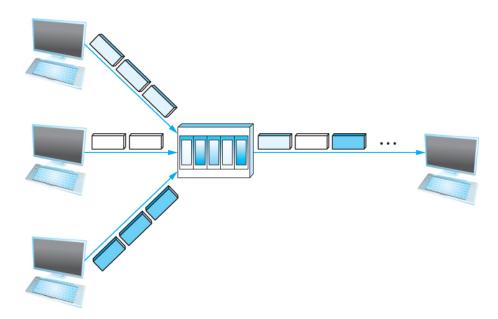
- Achieving indirect connectivity
 - Each cloud is a network
- Concepts
 - internetwork
 - Also called internet
 - Different from the Internet
 - Router/gateway
 - A node that is connected to two or more networks
 - Use different protocols from switches
- Recursively build larger clouds by connecting smaller ones


Addressing and routing in internetwork


- Host-to-host connectivity
 - Indirect
- Nodes are assigned addresses
- Routing
 - Routers forward messages
- Different destinations
 - Unicast
 - One to one
 - Broadcast
 - One to all
 - Multicast
 - One to many

2. Cost-effective resource sharing

- Question: how do all the hosts share the network when they want to communicate with each other?
 - Use at the same time
 - Fair
- Multiplexing: a system resource is shared among multiple users
 - Analogy: CPU sharing
- Mechanisms to multiplexing
 - Time-division multiplexing (TDM)
 - Frequency-division multiplexing (FDM)
 - Statistical multiplexing



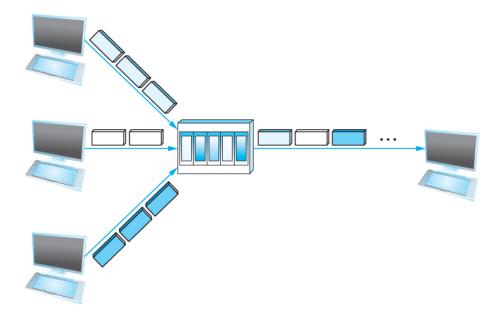
Problems with FDM and TDM

- What if a user does not have data to send all the time (Over-provision)?
 - Consider web browsing
 - \rightarrow Inefficient use of resources
- Max # of flows is fixed and known ahead of time (Under-provision)
 - Not practical to change the size of quantum or add additional quanta for TDM
 - Nor add more frequencies in FDM
- Often used in circuit switching networks
 Telephone network, cellular network

Statistical Multiplexing

- The physical link is shared over time (like TDM)
- But no fixed pattern
 - No predetermined slots
 - Packets are sent on demand

Pros and Cons

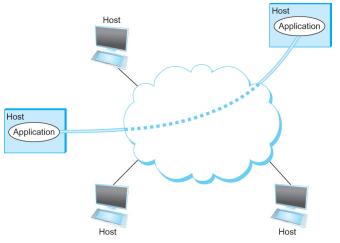

- Assumption: traffic is largely bursty
- Pros: Resources are not wasted when hosts are idle
- Cons: No guarantee hosts would have their turns to transmit
- Some possible fixes:
 - Divide message to packets
 - Limit maximum packet size
 - Fair scheduling of packets for transmission

Packets

Divide an application message into blocks of data → packets

- Limit maximum packet size
 - packets sent on demand
 - Must give each application/host its turn to send

Packet scheduling


- Scheduling: which packet to send
 - First come first serve (FIFQ)
 - Analogy to processing scheduling in operating systems

3. Support for common services

- Application developers want a network to provide services that make application programs communicate with each other, not just sending packets
 - E.g. reliably delivering an email message from a sender to a receiver
- Many complicated things need to happen
 - Can you name a few?
- Design choices
 - Application developers build all functions they need
 - Network provides common services → a layered network architecture
 - Build it once, and shared many times

3. Support for Common Services

- Provide services that make application programs communicate with each other, not just send packets
- Logical Channels
 - Application-to-Application communication path or a pipe

Process communicating over an abstract channel

Reliability

- Network should hide the errors
- Bits are lost
 - Bit errors (1 to a 0, and vice versa)
 - Burst errors several consecutive errors
- Packets are lost
- Links and node failures
- Messages are delayed
- Messages are delivered out-of-order

4. Manageability

- Manage the network as it grows
- When things go wrong

 Easily locate and isolate the faults
- An open research challenge
 - Datacenter networks
 - Software defined networking

5. Security

- Security is a big concern
 - Denial of service attacks
 - Data breaches
 - Attacks to HTTP protocols

• Security requirement was largely ignored when designing computer networks

Design requirements

- 1. Scalable connectivity
- 2. Cost-effective resource sharing
- 3. Support for common services
- 4. Manageability
- 5. Security