
ECE/COMPSCI 356 Computer Network
Architecture

Lecture 6: Link layer: Error Detection
and Reliable Transmission

Neil Gong
neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

mailto:neil.gong@duke.edu

Overview
• Link layer functions
– Encoding
• NRZ, NRZI, Manchester, 4B/5B

– Framing
• Byte-oriented, bit-oriented, clock-based

– Error detection
• Parity, checksum, CRC

– Reliable transmission
• Error correction, stop-and-wait, sliding window

Link-layer functions

• Completed by adapters
– Encoding
– Framing
– Error detection
– Reliable transmission

Error Detection

• Bit errors are introduced into frames
– Because of electrical interference and thermal noises

• Common technique for detecting transmission error
– CRC (Cyclic Redundancy Check)

• Used in HDLC, DDCMP, CSMA/CD, Token Ring

– Other approaches
• Two Dimensional Parity (BISYNC)
• Checksum (IP)

Error Detection

• Basic Idea of Error Detection
– To add redundant information to a frame that can be used

to determine if errors have been introduced
– Imagine (Extreme Case)

• Transmitting two complete copies of data
– Identical à No error
– Differ à Error
– Poor Scheme ???

» n bit message, n bit redundant information
» Error can go undetected

• In general, we can provide strong error detection technique
– k redundant bits, n bits message, k << n
– In Ethernet, a frame carrying up to 12,000 bits of data requires only 32-bit

CRC

Cyclic Redundancy Check (CRC)

• High-level idea:
– Represent an n+1-bit message with an n degree polynomial

M(x)
• Given a bit string 110001 we can associate a polynomial on a single

variable x for it.

1.x5+1.x4+0.x3+0.x2+0.x1+1.x0 = x5+x4+1 and the degree is 5.

– Divide the polynomial by a degree-k divisor polynomial
C(x)

– k-bit CRC: remainder
– Send Message + CRC that is dividable by C(x)

Polynomial arithmetic modulo 2
• B(x) can be divided by C(x) if B(x) has higher

degree
• B(x) can be divided once by C(x) if of same

degree
– x^3 + 1 can be divided by x^3 + x^2 + 1
– The remainder would be 0*x^3 + 1*x^2 + 0*x^1 +

0*x^0 (obtained by XORing the coefficients of
each term)

• Substraction B(x) – C(x) is done by XOR each
pair of matching coefficients

• (x^4 + x^3 + 1) – (x^3 + x^2 + 1) = x^4 +x^2

CRC algorithm - sender

• Select a divisor polynomial C(x)
• Represent message as polynomial M(x)
• Multiply M(x) by x^k
– Add k zeros to message.
– Call it T(x)

• Divide T(x) by C(x) and find the remainder
• Calculate P(x) = T(x) – remainder
– P(x) dividable by C(x)

• Send P(x)

An example

• 8-bit msg
– 10011010

• Divisor (3bit CRC)
– 1101

Msg sent: 10011010101

CRC algorithm - receiver

• Receive P(x) + E(x)
• Calculate (P(x) + E(x)) / C(x) and find the remainder
• If remainder is non-zero, error is detected

How to choose a divisor

• Intuition: unlikely to be divided evenly by an
error

• Corrupted msg is P(x) + E(x)
• If E(x) is single bit, then E(x) = xi

• If C(x) has the first and last term nonzero, then
detects all single bit errors

• Find C(x) by looking it up in a book

Divisor

• Six divisor polynomials that have become
international standards are:
– CRC-8 = x8+x2+x+1
– CRC-10 = x10+x9+x5+x4+x+1
– CRC-12 = x12+x11+x3+x2+x+1
– CRC-16 = x16+x15+x2+1
– CRC-CCITT = x16+x12+x5+1
– CRC-32 =

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

Overview
• Link layer functions
– Encoding
• NRZ, NRZI, Manchester, 4B/5B

– Framing
• Byte-oriented, bit-oriented, clock-based

– Error detection
• Parity, checksum, CRC

– Reliable transmission
• Error correction, stop-and-wait, sliding window

Reliable transmission

• What to do if a receiver detects bit errors?
• Two high-level approaches
– Error correction

• Some error codes are strong enough to correct errors.
• The overhead is typically too high.
• Corrupt frames must be discarded.

– Retransmission
• Acknowledgements and Timeouts

Acknowledgements

• An acknowledgement (ACK for short) is a small
control frame that a protocol sends back to its peer
saying that it has received the earlier frame.
– A control frame is a frame with header only (no data).

• The receipt of an acknowledgement indicates to the
sender of the original frame that its frame was
successfully delivered.

Timeouts

• If the sender does not receive an acknowledgment
after a reasonable amount of time, then it retransmits
the original frame.

• The action of waiting a reasonable amount of time is
called a timeout.

• The general strategy of using acknowledgements and
timeouts to implement reliable delivery is sometimes
called Automatic Repeat reQuest (ARQ).

Retransmission protocols

• Stop-and-wait

• Sliding window

Stop-and-wait

• Send one frame, wait
for an ack, and send the
next

• Retransmit if times out

• Note in the last figure
(d), there might be
confusion: a new frame,
or a duplicate?

Sequence number

• Add a sequence number
to each frame to avoid
the ambiguity

Stop-and-wait drawback

• For a 1Mbps pipe, it takes 8 seconds to transmit 1MB. If the
link latency is less than 8 seconds, the pipe is full before all
data are pumped into the pipe

• For a 1Gbps pipe, it takes 8 ms to transmit 1MB.
• Inefficient

Sliding Window Protocol

Timeline for Sliding Window Protocol

Sliding Window Protocol - Sender

• Sender assigns a sequence number denoted as SeqNum to each
frame.
– Assume it can grow infinitely large

• Sender maintains three variables
– Sending Window Size (SWS)

• Upper bound on the number of outstanding (unacknowledged) frames that
the sender can transmit

– Last Acknowledgement Received (LAR)
• Sequence number of the last acknowledgement received

– Last Frame Sent (LFS)
• Sequence number of the last frame sent

Sliding Window Protocol - Sender

• Sender also maintains the following invariant
LFS – LAR ≤ SWS

Sliding Window on Sender

Sliding Window Protocol - Sender

• When an acknowledgement arrives
– the sender moves LAR to right, thereby allowing the sender to transmit

another frame

• Also the sender associates a timer with each frame it transmits
– It retransmits the frame if the timer expires before the ACK is received

• Note that the sender has to be willing to buffer up to SWS
frames

Sliding Window Protocol -- Receiver

• Receiver maintains three variables
– Receiving Window Size (RWS)

• Upper bound on the number of out-of-order frames that the receiver is
willing to accept

– Largest Acceptable Frame (LAF)
• Sequence number of the largest acceptable frame

– Last Frame Received (LFR)
• Sequence number of the last frame received

• Receiver also maintains the following invariant
LAF – LFR ≤ RWS

Sliding Window on Receiver

Sliding Window Protocol -- Receiver

• When a frame with sequence number SeqNum arrives, what
does the receiver do?

– If SeqNum ≤ LFR or SeqNum > LAF
• Discard it (the frame is outside the receiver window)

– If LFR < SeqNum ≤ LAF
• Accept it
• Now the receiver needs to decide whether or not to send an ACK

Sliding Window Protocol -- Receiver

• Let SeqNumToAck
– Denote the largest sequence number not yet acknowledged,

such that all frames with sequence number less than or
equal to SeqNumToAck have been received

• The receiver acknowledges the receipt of
SeqNumToAck even if high-numbered packets have
been received
– This acknowledgement is said to be cumulative.

• The receiver then sets
– LFR = SeqNumToAck and adjusts
– LAF = LFR + RWS

Sliding Window Protocol -- Receiver

An example

For example, suppose LFR = 5 and RWS = 4
(i.e. the last ACK that the receiver sent was for seq. no. 5)

ÞLAF = 9

If frames 7 and 8 arrive, they will be buffered because they are
within the receiver window

But no ACK will be sent since frame 6 is yet to arrive
Frames 7 and 8 are out of order
Frame 6 arrives (it is late because it was lost first time and had to

be retransmitted)
Now Receiver Acknowledges Frame 8

and bumps LFR to 8
and LAF to 12

Issues with Sliding Window Protocol

• When timeout occurs, the amount of data in transit decreases
– Since the sender is unable to advance its window

• When the frame loss occurs, this scheme is no longer keeping
the pipe full
– The longer it takes to notice that a frame loss has occurred, the more

severe the problem becomes

• How to improve this
– Negative Acknowledgement (NAK)
– Additional Acknowledgement
– Selective Acknowledgement

Issues with Sliding Window Protocol

• Negative Acknowledgement (NAK)
– Receiver sends NAK for frame 6 when frame 7 arrive (in the previous

example)

• Additional Acknowledgement
– Receiver sends additional ACK for frame 5 when frame 7 arrives

• Sender uses duplicate ACK as a clue for frame loss

• Selective Acknowledgement
– Receiver will acknowledge exactly those frames it has received, rather than the

highest number frames
• Receiver will acknowledge frames 7 and 8
• Sender knows frame 6 is lost

How to select the window size

• SWS is easy to compute
– Delay ´ Bandwidth

• RWS can be anything
– Two common setting

– RWS = 1
No buffer at the receiver for frames that arrive out of order

– RWS = SWS
The receiver can buffer frames that the sender transmits

– It does not make any sense to keep RWS > SWS

Finite Sequence Number

• Frame sequence number is specified in the header
field
– Finite size

– 3 bit: eight possible sequence number: 0, 1, 2, 3, 4, 5, 6, 7

– It is necessary to wrap around

Impact on window size

• How to distinguish between different incarnations of
the same sequence number?
– Let MaxSeqNum be the number of available sequence

numbers
– SWS + 1 ≤ MaxSeqNum

• Is this sufficient?

Impact on window size

SWS + 1 ≤ MaxSeqNum
– Is this sufficient?

– Depends on RWS
– If RWS = 1, then sufficient
– If RWS = SWS, then not good enough

• For example, we have eight sequence numbers
0, 1, 2, 3, 4, 5, 6, 7
RWS = SWS = 7

Sender sends 0, 1, …, 6
Receiver receives 0, 1, … ,6
Receiver acknowledges 0, 1, …, 6
ACK (0, 1, …, 6) are lost
Sender retransmits 0, 1, …, 6
Receiver is expecting 7, 0, …., 5

Impact on window size

To avoid this,
If RWS = SWS

SWS < (MaxSeqNum + 1)/2

Exercise

• Delay: 100ms; Bandwidth: 1Mbps; Frame
Size: 1000 Bytes; Ack: 40 Bytes

• Q: the smallest window size to keep the pipe
full?

• Window size = largest amount of unacked data
• How long does it take to ack a frame?
– RTT = 100 ms * 2 + transmission delay of a frame

(1000B) + transmission delay of an ack (40B)
~=208ms

• How many frames can the sender send in an
RTT?
– 1Mbps * 208ms / 8000 bits = 26

• Roughly 13 frames in the pipe from sender to
receiver, and 13 acks from receiver to sender

100ms

1Mbps

Summary
• CRC

• Reliable transmission
– Stop-and-wait
– Sliding window

