
ECE/COMPSCI 356 Computer Network
Architecture

Lecture 14: Midterm review

Neil Gong
neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

mailto:neil.gong@duke.edu

Midterm

• Time
– 03/06 W, 10:05 – 11:20am

• Closed-book
• A note sheet (double-sided US letter) is

allowed
• Calculator is allowed
• Covering all lectures so far

An example

What happens when
H9 joins the network
and sends an IP packet
to H1?

Joining the network

• Configure H9 via DHCP
– IP address
• Private IP address when NAT is used
• NAT keeps a table mapping private to public addresses

– Default router
• R3

– In H9’s forwarding table, R3 is the NextHop for all IP packets

Sending IP packet to H1
• H9 checks its forwarding table

– NextHop is R3

• H9 and R3 are connected via Ethernet, a multi-access
link

• Encapsulate the IP packet into an Ethernet frame
– If the IP packet is too large, then fragment it to multiple IP packets

• May use MTU discovery to find the minimum MTU
– Adding Ethernet frame header and trailer to each IP packet
– Sending frame to R3

R3
• R3 receives Ethernet frame from H9

– Checks CRC
– Removes header and trailer

• R3 checks its forwarding table
– NextHop is R2

• Where is forwarding table from?
– Routing protocol

• Intradomain routing: RIP and OSPF
• Interdomain routing: BGP

• Send the IP packet to R2
– Via point-to-point link
– Add header and/or trailer depending on

the protocol
– Send the frame to R2

R2
• R2 receives frame from R3

– Error detection
– Removes header and trailer

• R2 checks its forwarding table
– H1 is in the same network

• Encapsulate IP packet to Ethernet
frame
– If MAC address of H1 is

unknown, use ARP to map IP to
MAC address

– Send Ethernet frame to H1

Link layer functions
• Transmit a frame between two nodes in point-to-point

link or multi-access link
• Link layer functions
– Encoding
• NRZ, NRZI, Manchester, 4B/5B

– Framing
• Byte-oriented, bit-oriented, clock-based

– Error detection
• CRC, Checksum

– Reliable transmission
• stop-and-wait, sliding window
• May also be used at higher layers

– TCP and application layer

Physical layer

• Data are transmitted as electromagnetic waves
in some medium

• Performance metrics
– Bandwidth
– Delay
– Delay x bandwidth
– Transfer time
– Throughput

Bandwidth

Number of bits that can be transmitted per second

Delay

• How long does it take for one bit to travel from
one end of link to the other?

• Length Of Link / Speed Of WaveInMedium

• Round-trip time (RTT): 2 x delay

Delay x bandwidth product

• We think the link between two nodes as a hollow pipe

• Delay length of the pipe and bandwidth the width of the pipe

• Volume of the pipe: #bits the sender sends before the receiver
receives the first bit

• When the pipe is full, no more bits can be pumped into it

Transfer time and Throughput

• Transfer time = delay+ transmission time +
queuing time

transmission time = Transfer Size/bandwidth

• Transfer time: also called latency/delay

• Throughput = Transfer Size/Transfer Time

Example questions

• Bandwidth:1Mbps
• One-way delay:100ms
• Data:1MB
• Delay * Bandwidth = 100Kb
• 1MB/100Kb = 80 pipes of data
• Transfer time=80 * 100ms + 100ms = 8.1s

Transfer time

Encoding

2

11100 01011 11110 10101

The corresponding NRZI sequence is:

3. (5 pts) [PD] Page 153: Problem 5. Assuming a framing protocol that uses bit stuffing, show
the bit sequence transmitted over the link when the frame contains the following bit
sequence:

110101111101011111101011111110

Mark the stuffed bits in bold.

Answer:

The stuffed bits (zeros) are in bold:
1101 0111 1100 1011 1110 1010 1111 1011 0

4. (5 pts) [PD] Page 154: Problem 6. Suppose the following sequence of bits arrives over a
link:

110101111101011111001011111110

Show the resulting frame after any stuffed bits have been removed. Indicate any errors that
might have been introduced into the frame.

Answer:

1101011111101111101011111110

No errors detectable by the receiver.

5. (10 pts) [PD] Page 155: Problem 18. Suppose we want to transmit the message 11100011

and protect it from errors using the CRC polynomial x3+1.
(a) Use polynomial long division to determine the message that should be transmitted.
(b) Suppose the leftmost bit of the message is inverted due to noise on the transmission link.

What is the result of receiver’s CRC calculations? How does the receiver know that an
error has occurred?

Answer:

Solutions for Chapter 2

1.

Clock

 Bits 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

NRZ

Manchester

NRZI

2. See the figure below.

Bits 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1

NRZI

3. The answer is in the book.

4. One can list all 5-bit sequences and count, but here is another approach: there are
23 sequences that start with 00, and 23 that end with 00. There are two sequences,
00000 and 00100, that do both. Thus, the number that do either is 8+8−2 = 14,
and finally the number that do neither is 32 − 14 = 18. Thus there would have
been enough 5-bit codes meeting the stronger requirement; however, additional
codes are needed for control sequences.

5. The stuffed bits (zeros) are in bold:
1101 0111 1100 1011 1110 1010 1111 1011 0

6. The ∧ marks each position where a stuffed 0 bit was removed. There were no
stuffing errors detectable by the receiver; the only such error the receiver could
identify would be seven 1’s in a row.
1101 0111 11∧10 1111 1∧010 1111 1∧110

7. The answer is in the book.

8. ..., DLE, DLE, DLE, ETX, ETX

9. (a) X DLE Y, where X can be anything besides DLE and Y can be anything
except DLE or ETX. In other words, each DLE must be followed by either
DLE or ETX.

(b) 0111 1111.

9

2

11100 01011 11110 10101

The corresponding NRZI sequence is:

3. (5 pts) [PD] Page 153: Problem 5. Assuming a framing protocol that uses bit stuffing, show
the bit sequence transmitted over the link when the frame contains the following bit
sequence:

110101111101011111101011111110

Mark the stuffed bits in bold.

Answer:

The stuffed bits (zeros) are in bold:
1101 0111 1100 1011 1110 1010 1111 1011 0

4. (5 pts) [PD] Page 154: Problem 6. Suppose the following sequence of bits arrives over a
link:

110101111101011111001011111110

Show the resulting frame after any stuffed bits have been removed. Indicate any errors that
might have been introduced into the frame.

Answer:

1101011111101111101011111110

No errors detectable by the receiver.

5. (10 pts) [PD] Page 155: Problem 18. Suppose we want to transmit the message 11100011

and protect it from errors using the CRC polynomial x3+1.
(a) Use polynomial long division to determine the message that should be transmitted.
(b) Suppose the leftmost bit of the message is inverted due to noise on the transmission link.

What is the result of receiver’s CRC calculations? How does the receiver know that an
error has occurred?

Answer:

Solutions for Chapter 2

1.

Clock

 Bits 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

NRZ

Manchester

NRZI

2. See the figure below.

Bits 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1

NRZI

3. The answer is in the book.

4. One can list all 5-bit sequences and count, but here is another approach: there are
23 sequences that start with 00, and 23 that end with 00. There are two sequences,
00000 and 00100, that do both. Thus, the number that do either is 8+8−2 = 14,
and finally the number that do neither is 32 − 14 = 18. Thus there would have
been enough 5-bit codes meeting the stronger requirement; however, additional
codes are needed for control sequences.

5. The stuffed bits (zeros) are in bold:
1101 0111 1100 1011 1110 1010 1111 1011 0

6. The ∧ marks each position where a stuffed 0 bit was removed. There were no
stuffing errors detectable by the receiver; the only such error the receiver could
identify would be seven 1’s in a row.
1101 0111 11∧10 1111 1∧010 1111 1∧110

7. The answer is in the book.

8. ..., DLE, DLE, DLE, ETX, ETX

9. (a) X DLE Y, where X can be anything besides DLE and Y can be anything
except DLE or ETX. In other words, each DLE must be followed by either
DLE or ETX.

(b) 0111 1111.

9

Questions may also be related to bit stuffing, etc.

1

HW 1: ECE 356/ COMPCSI 356: Computer Network Architectures

Homeworks must be done individually. The homework is due at 11:59 PM on 02/19/2024.
Please submit your solutions as a single PDF file via Canvas. Show all steps of your
derivations.

1. (10 pts) Suppose a 128-Kbps point-to-point link is set up between Earth and a rover on Mars.

The distance from Earth to Mars (when they are closest together) is approximately 55 Gm,
and data travels over the link at the speed of light 3 × 108 m/s.
(a) Calculate the minimum RTT for the link.
(b) Calculate the delay × bandwidth product for the link.
(c) A camera on the rover takes pictures of its surroundings and sends these to Earth. How
quickly after a picture is taken can it reach Mission Control on Earth? Assume that each
image is 5 MB in size.

Answer:
(a) Propagation delay on the link is (55 × 109)/(3 × 108) = 184 seconds. Thus, the RTT is 368
seconds.
(b) There is some ambiguity in this question:

- Delay could be one-way (184 s) or RTT (386 s)
- Conversion to MB could be either 1 MB = 10^6 B, or 1 MB = 2^20 B

One answer:
The delay × bandwidth product for the link is 184 s×128×103 b/s = 23552000 b = 23552000
b / (2^20 *8 b/MB) = ~ 2.81 MB.
Alternative valid answer: conversion factor of 10^6*8 = ~2.94 MB
Alternative valid answer: RTT as a delay: 5.62 MB
Alternative valid answer: RTT as a delay, conversion factor of 10^6*8 = 5.88 MB

(c) After a picture is taken, it must be transmitted on the link and be completely propagated
before Mission Control can interpret it. Transmit delay for 5 MB of data is 41,943,040
bits/128×103 = 328 seconds. Thus, the total time required is transmit delay + propagation
delay = 328+184 = 512 seconds.

Alternative valid answer: conversion factor of 10^6*8, transmit delay is 40,000,000
bits/128*103 = 312.5 seconds.

2. (5 pts) Show the 4B/5B encoding, and the resulting NRZI signal, for the following bit
sequence:

1110 0101 0000 0011

Answer: the 4B/5B encoding for this sequence is as follows:
11100 01011 11110 10101

CRC Error Detection

2

The corresponding NRZI sequence is:

3. (5 pts) Assuming a framing protocol that uses bit stuffing, show the bit sequence transmitted
over the link when the frame contains the following bit sequence:

110101111001011111101011111110

Mark the stuffed bits in bold.

Answer:

The stuffed bits (zeros) are in bold:
11010111100101111101010111110110

4. (5 pts) Suppose the following sequence of bits arrives over a link:

110101111101011111001011111110

Show the resulting frame after any stuffed bits have been removed. Indicate any errors that
might have been introduced into the frame.

Answer:

1101011111101111101011111110

No errors detectable by the receiver.

5. (10 pts) Suppose we want to transmit the message 11001111 and protect it from errors using

the CRC polynomial x3+1.
(a) Use polynomial division to determine the message that should be transmitted.
(b) Suppose the leftmost bit of the message is inverted due to noise on the transmission link.

What is the result of receiver’s CRC calculations? How does the receiver know that an
error has occurred?

Answer:
(a) We take the message 11001111, append 000 to it, and divide by 1001 according to the
method shown in Section 2.4.3. The remainder is 101; what we transmit is the original
message with this remainder appended, or 11001111101.

Solutions for Chapter 2

1.

Clock

 Bits 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

NRZ

Manchester

NRZI

2. See the figure below.

Bits 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1

NRZI

3. The answer is in the book.

4. One can list all 5-bit sequences and count, but here is another approach: there are
23 sequences that start with 00, and 23 that end with 00. There are two sequences,
00000 and 00100, that do both. Thus, the number that do either is 8+ 8− 2 = 14,
and finally the number that do neither is 32 − 14 = 18. Thus there would have
been enough 5-bit codes meeting the stronger requirement; however, additional
codes are needed for control sequences.

5. The stuffed bits (zeros) are in bold:
1101 0111 1100 1011 1110 1010 1111 1011 0

6. The ∧ marks each position where a stuffed 0 bit was removed. There were no
stuffing errors detectable by the receiver; the only such error the receiver could
identify would be seven 1’s in a row.
1101 0111 11∧10 1111 1∧010 1111 1∧110

7. The answer is in the book.

8. ..., DLE, DLE, DLE, ETX, ETX

9. (a) X DLE Y, where X can be anything besides DLE and Y can be anything
except DLE or ETX. In other words, each DLE must be followed by either
DLE or ETX.

(b) 0111 1111.

9

2

The corresponding NRZI sequence is:

3. (5 pts) Assuming a framing protocol that uses bit stuffing, show the bit sequence transmitted
over the link when the frame contains the following bit sequence:

110101111001011111101011111110

Mark the stuffed bits in bold.

Answer:

The stuffed bits (zeros) are in bold:
11010111100101111101010111110110

4. (5 pts) Suppose the following sequence of bits arrives over a link:

110101111101011111001011111110

Show the resulting frame after any stuffed bits have been removed. Indicate any errors that
might have been introduced into the frame.

Answer:

1101011111101111101011111110

No errors detectable by the receiver.

5. (10 pts) Suppose we want to transmit the message 11001111 and protect it from errors using

the CRC polynomial x3+1.
(a) Use polynomial division to determine the message that should be transmitted.
(b) Suppose the leftmost bit of the message is inverted due to noise on the transmission link.

What is the result of receiver’s CRC calculations? How does the receiver know that an
error has occurred?

Answer:
(a) We take the message 11001111, append 000 to it, and divide by 1001 according to the
method shown in Section 2.4.3. The remainder is 101; what we transmit is the original
message with this remainder appended, or 11001111101.

Solutions for Chapter 2

1.

Clock

 Bits 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

NRZ

Manchester

NRZI

2. See the figure below.

Bits 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1

NRZI

3. The answer is in the book.

4. One can list all 5-bit sequences and count, but here is another approach: there are
23 sequences that start with 00, and 23 that end with 00. There are two sequences,
00000 and 00100, that do both. Thus, the number that do either is 8+ 8− 2 = 14,
and finally the number that do neither is 32 − 14 = 18. Thus there would have
been enough 5-bit codes meeting the stronger requirement; however, additional
codes are needed for control sequences.

5. The stuffed bits (zeros) are in bold:
1101 0111 1100 1011 1110 1010 1111 1011 0

6. The ∧ marks each position where a stuffed 0 bit was removed. There were no
stuffing errors detectable by the receiver; the only such error the receiver could
identify would be seven 1’s in a row.
1101 0111 11∧10 1111 1∧010 1111 1∧110

7. The answer is in the book.

8. ..., DLE, DLE, DLE, ETX, ETX

9. (a) X DLE Y, where X can be anything besides DLE and Y can be anything
except DLE or ETX. In other words, each DLE must be followed by either
DLE or ETX.

(b) 0111 1111.

9

3

(b) Inverting the first bit of the transmission gives 01001111101; dividing by 1001 (x3 + 1)
gives a remainder of 10; the fact that the remainder is nonzero tells us a bit error occurred.

6. (10 pts) Suppose you are designing a sliding window protocol for a 1-Mbps point-to-point
link to the stationary satellite evolving around the Earth at an altitude of 3 × 104 km.
Assuming that each frame carries 1 KB of data, what is the minimum number of bits you
need for the sequence number in the following cases? Assume the speed of light is 3 × 108

m/s.
(a) RWS=1
(b) RWS=SWS

Answer:

One-way latency of the link is 100 ms. (Bandwidth)×(roundtrip delay) is about 125 pps × 0.2
sec, or 25 packets. SWS should be this large.
(a) If RWS=1, the necessary sequence number space is 26. Therefore, 5 bits are needed.
(b) If RWS=SWS, the sequence number space must cover twice the SWS, or up to 50.
Therefore, 6 bits are needed.

7. (10 pts) Draw a timeline diagram for the sliding window algorithm with SWS = RWS = 3
frames. Assume frame 4 is lost. Use a timeout of approximately 2 x RTT. Frame index starts
from 1.

Answer:

Reliable Transmission via Sliding
Window

4

4

3

(b) Inverting the first bit of the transmission gives 01001111101; dividing by 1001 (x3 + 1)
gives a remainder of 10; the fact that the remainder is nonzero tells us a bit error occurred.

6. (10 pts) Suppose you are designing a sliding window protocol for a 1-Mbps point-to-point
link to the stationary satellite evolving around the Earth at an altitude of 3 × 104 km.
Assuming that each frame carries 1 KB of data, what is the minimum number of bits you
need for the sequence number in the following cases? Assume the speed of light is 3 × 108

m/s.
(a) RWS=1
(b) RWS=SWS

Answer:

One-way latency of the link is 100 ms. (Bandwidth)×(roundtrip delay) is about 125 pps × 0.2
sec, or 25 packets. SWS should be this large.
(a) If RWS=1, the necessary sequence number space is 26. Therefore, 5 bits are needed.
(b) If RWS=SWS, the sequence number space must cover twice the SWS, or up to 50.
Therefore, 6 bits are needed.

7. (10 pts) Draw a timeline diagram for the sliding window algorithm with SWS = RWS = 3
frames. Assume frame 4 is lost. Use a timeout of approximately 2 x RTT. Frame index starts
from 1.

Answer:

(a) Frame 4 is lost
(b) Frame 4, 5, 6 are lost

IP layer

• Header format
• Fragmentation
• ARP
• ICMP and its applications
• Routing
– Intradomain routing: RIP, OSPF
– Interdomain routing: BGP

• DHCP, NAT, IPv6, IP tunnels

21

IP Packet Fragmentation
• A datagram with size 2400 bytes must be fragmented according to an MTU

limit of 1000 bytes

IP datagram

Router

Fragment 2Fragment 3

MTU: 1000MTU: 4000

Fragment 1

Header length: 20
Total length: 2400

Identification: 0xa428
DF flag: 0
MF flag: 0

Fragment offset: 0

Header length: 20
Total length: 996

Identification: 0xa428
DF flag: 0
MF flag: 1

fragment offset: 0

Header length: 20
Total length: 996

Identification: 0xa428
DF flag: 0
MF flag: 1

Fragment offset: 122

Header length: 20
Total length: 448

Identification: 0xa428
DF flag: 0
MF flag: 0

Fragment offset: 244

• ARP Request from Argon is broadcasted:
– Source addr in Ethernet header: 00:a0:24:71:e4:44
– Destination addr in Ethernet header: FF:FF:FF:FF:FF:FF

• Source hardware address: 00:a0:24:71:e4:44
• Source protocol address: 128.143.137.144
• Target hardware address: 00:00:00:00:00:00
• Target protocol address: 128.143.137.1

ARP ExampleArgon
128.143.137.144
00:a0:24:71:e4:44

Router137
128.143.137.1

00:e0:f9:23:a8:20

ARP Request:
What is the MAC address
of 128.143.71.1?

ARP request:
What’s the MAC address of
128.143.137.1

• ARP Reply from Router137 is unicasted:
– Source addr: 00:e0:f9:23:a8:20
– Dst addr: 00:a0:24:71:e4:44

• Source hardware address: 00:e0:f9:23:a8:20
• Source protocol address: 128.143.137.1
• Target hardware address: 00:a0:24:71:e4:44
• Target protocol address: 128.143.137.144

Argon
128.143.137.144
00:a0:24:71:e4:44

Router137
128.143.137.1

00:e0:f9:23:a8:20

ARP Reply:
The MAC address of 128.143.71.1
is 00:e0:f9:23:a8:20

ARP Reply:
The MAC address of 128.143.137.1 is

00:e0:f9:23:a8:20

Distance vector algorithm: updates

• When a node x receives a distance vector from a
neighbor v, it updates its own distance vector using
the Bellman-Ford Equation
– Considering entry (u, dx(u), NextHop)
– If c(x,v) + dv(u) < dx(u) then

• dx(u) = c(x,v) + dv(u)
• NextHop=v

Distance vector algorithm: an example

• t = 0
• a = ((a, 0, a), (b, 3, b), (c, 6, c))
• b = ((a, 3, a), (b, 0, b), (c, 1, c))
• c = ((a, 6, a), (b, 1, b), (c, 0, c) (d, 2, d))
• d = ((c, 2, c), (d, 0, d))

a

b

c d
3 1

6

2

• t = 1
• a = ((a, 0, a), (b, 3, b), (c, 4, b), (d, 8, c))
• b = ((a, 3, a), (b, 0, b), (c, 1, c), (d, 3, c))
• c = ((a, 4, b), (b, 1, b), (c, 0, c), (d, 2, d))
• d = ((a, 8, c), (b, 3, c), (c, 2, c), (d, 0, d))

• t = 2
• a = ((a, 0, a), (b, 3, b), (c, 4, b), (d, 6, b))
• b = ((a, 3, a), (b, 0, b), (c, 1, c), (d, 3, c))
• c = ((a, 4, b), (b, 1, b), (c, 0, c), (d, 2, d))
• d = ((a, 6, c), (b, 3, c), (c, 2, c), (d, 0, d))

Forward search algorithm

• Two lists: Tentative and Confirmed
• Each entry: (destination, cost, NextHop)
1. Confirmed = {(s,0,s)}
2. Let Next = Confirmed.last
3. For each Nbr of Next

– Cost = Next.cost + Next à Nbr
• If Nbr not in Confirmed or Tentative

– Add (Nbr, Cost, Nbr) to Tentative if Next.Nexthop is s
– Add (Nbr, Cost, Next.Nexthop) to Tentative if Next.Nexthop is not s

• If Nbr is in Tentative and Cost is less than Nbr.Cost
– Update Nbr.Cost to Cost and Nbr.Nexthop to Next.Nexthop

4. If Tentative not empty, pick the entry with smallest cost in Tentative
and move it to Confirmed, and return to Step 2
– Pick the smallest cost from a smaller list Tentative, rather than the

rest of the graph

Forward search
algorithm in OSPF

Step Confirmed Tentative

1 (D,0,D)

2

3

4

5

6

7

Step Confirmed Tentative

1 (D,0,D)

2 (D,0,D) (B,11,B), (C,2,C)

3 (D,0,D), (C,2,C) (B,11,B)

4 (D,0,D), (C,2,C) (B,5,C)
(A,12,C)

5 (D,0,D), (C,2,C), (B,5,C) (A,12,C)

6 (D,0,D),(C,2,C),(B,5,C) (A,10,C)

7 (D,0,D),(C,2,C),(B,5,C),
(A,10,C)

Forward search
algorithm in OSPF

