
ECE/COMPSCI 356 Computer Network
Architecture

Lecture 18: Transport protocols

Neil Gong
neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

mailto:neil.gong@duke.edu

Overview

• UDP
• TCP

Before: How to deliver packet from
one host to another

• Direct link
– Encoding, framing, error detection, reliability
– Multi-access control

• Multi-link network switching and forwarding
– Datagrams, virtual circuit
– Bridges, spanning tree algorithm

• Interconnecting multiple networks
– IP addressing, forwarding, routing

• ARP, distance vector, link state, path vector
– DHCP, NAT, VPN, tunnels etc.

Transport layer design goals

• Goal: a process to process communication
channel
– Upper-layer: application
– Lower-layer: network

Desirable features
• Reliable delivery
• In-order
• No duplication
• Arbitrarily large messages
• Multiple processes on the same host
• Connection setup
• Not to send faster than a receiver can receive
• Not to send faster than the network allows
• Security
• …

IP service model

• Best-effort
– May discard, reorder, duplicate messages
– Links have MTU limits
– Arbitrarily long latency

Design choices

• How to achieve the desired process-to-process
service model?
– Let applications handle it

• Develop a set of libraries – making application
development complex

– Enhance the network to provide the desirable
features

• Not considered a good idea – making IP complicated

– Place a service layer on top of IP to handle it
• This is chosen by the Internet design

Big picture
• We move one layer up and look at the transport

layer.
Application

Layer

Network
Layer

Link Layer

IP

ARP Hardware
Interface RARP

Media

ICMP IGMP

Transport
Layer

TCP UDP

User
Process

User
Process

User
Process

User
Process

Transport layer protocols are end-to-
end protocols

Application

Transport

Network

HOST

Data Link Data Link Data Link

Network

Application

Transport

Network

HOST

Data Link

Web
server

Browser

Router

Transport Protocols in the Internet

UDP - User Datagram Protocol
• datagram oriented
• unreliable, connectionless
• simple
• unicast and multicast
• useful only for few applications,

e.g., multimedia applications
• used by many protocols

– network management (SNMP),
routing (RIP), naming (DNS),
etc.

TCP - Transmission Control Protocol
• byte stream oriented
• reliable, connection-oriented
• complex
• only unicast
• used for most Internet applications:

– web (http), email (smtp), file
transfer (ftp), terminal (telnet),
etc.

The most commonly used transport protocols are UDP and TCP.

UDP - User Datagram Protocol
• UDP supports unreliable transmissions of datagrams

– Each output operation by a process produces exactly one UDP
datagram

• The only thing that UDP adds is multiplexing and demultiplexing
– Support multiple processes on the same host

• Protocol number: 17

UDP

IP IPIP IP IP

UDP

Applications Applications

UDP Format
IP header UDP header UDP data

UDP message length Checksum

DATA

20 bytes 8 bytes

0 15 16 31

Source Port Number Destination Port Number

Port numbers (16-bit) identify sending and receiving applications
(processes). Maximum port number is 216-1= 65,535

Message Length (16-bit) is at least 8 bytes (I.e., Data field can be empty)
and at most 65,535 bytes

Checksum (16-bit) includes UDP header and data, and a pseudo-header
(protocol number, IP source/dst)

Port Numbers
• UDP (and TCP) use port numbers to identify applications
• A globally unique address at the transport layer (for both

UDP and TCP) is a tuple <IP address, port number>
• There are 65,535 UDP ports per host.

IP

TCP UDP

User
Process

Demultiplex
based on

Protocol field in IP
header

User
Process

User
Process

User
Process

User
Process

User
Process

Demultiplex
based on

port number

How to find out application ports

• Servers use well-known ports
– DNS: 53
– HTTP: 80
– HTTPS: 443
– /etc/services

• A server learns a client’s port from its packets

Implementation

• A �port� is an
abstraction

• Implementation may
differ from OS to OS

• Ex: port implemented
using a message queue
– Packets discarded when

queues are full

Applications of UDP

• DHCP
• Traceroute
• Domain Name Service
• …

Transimission Control Protocol
(TCP)

-- perhaps the most widely used
protocol

Overview
• Connection-oriented protocol
• Provides a reliable unicast end-to-end byte stream

over an unreliable internetwork.

TCP

IP Internetwork

By
te

 S
tre

am

By
te

 S
tre

am

TCP

Unique design challenges
• We�ve learned how to reliably transmit over a direct link

– Coding/encoding, framing, sliding window

• What�s new?
1. Process-to-process communication à connection setup
2. Heterogeneity

– Bandwidth varies: how fast should the sender send?
– RTT varies: when should a sender time out?

3. Out of order
4. Resource sharing

• Many senders share a link in the middle of the network

A strawman design

• Hop-by-hop reliable transmission

• A bad idea
– Can�t ensure end-to-end reliability
– The end-to-end argument: a function should not

be provided at the lower levels of a system unless
it can be completely and correctly implemented at
that level

TCP features

• Connection-oriented
• Reliable, in-order byte stream service
• Fully duplex
• Flow control: not to overrun a receiver
• Congestion control: not to congest the network

TCP manages a byte stream

TCP

• Segment format

• Connection management

• Reliable transmission

• Congestion control

TCP Segment format

IP header TCP header TCP data

Sequence number (32 bits)

DATA

20 bytes 20 bytes

 0 15 16 31

Source Port Number Destination Port Number

Acknowledgement number (32 bits)

window sizeheader
length 0 Flags

Options (if any)

TCP checksum urgent pointer

20 bytes

TCP segments have a 20 byte header with >= 0 bytes of data.

• Port Number:
multiplexing/demultiplexing
– A port number identifies the endpoint of

a connection.
– A pair <IP address, port number>

identifies one endpoint of a connection.
– Two pairs <client IP address,
client port number> and <server
IP address, server port number>
identify a TCP connection.

TCP

IP

Applications

23 10480Ports:

TCP

IP

Applications

7 1680 Ports:

• Sequence Number (SeqNo):
– Sequence number is 32 bits long
– So the range of SeqNo is

0 <= SeqNo <= 232 -1

– The sequence number in a segment
identifies the first byte in the segment

– Initial Sequence Number (ISN) of a
connection is set during connection
establishment

• Acknowledgement Number (AckNo):
– Acknowledgements are sent together with data
– The AckNo contains the next SeqNo that a host

is expecting
– ACK is cumulative

• AdvertisedWindow:
– Used to implement flow control
– Each side of the connection

advertises the window size
– Window size is the maximum

number of bytes that a receiver
can accept

– Maximum window size is 216-1=
65535 bytes

A simplified TCP process

• Header Length (4bits):
– Length of header in 32-bit

words
– Note that TCP header has

variable length (with minimum
20 bytes)

– Question: what�s the maximum
header length?

• Reserved: 6 bits
– Must be zero

• Flag bits: (from left to right)
– URG: Urgent pointer is valid

(not encouraged to use)
• If the bit is set, the following bytes

contain an urgent message in the
range:

SeqNo <= urgent message <
SeqNo+urgent pointer

– ACK: Acknowledgement
Number is valid

• Segment contains a valid ACK
– PSH: PUSH Flag

• Notification from sender to the
receiver that the receiver should
pass all data that it has to the
application.

• Flag bits:
– RST: Reset the connection

– The flag causes the receiver to reset the
connection, e.g., sender detects an error in the
connection

– Receiver of a RST terminates the connection
and informs higher layer application about the
reset

– (Real life usage: ISP uses RST to block P2P
traffic)

– SYN: Synchronize sequence numbers
– Sent in the first packet when initiating a

connection

– FIN: Sender is finished with sending
– Used for closing a connection
– Both sides of a connection must send a FIN

• TCP Checksum:
– TCP checksum covers both TCP header and

TCP data, and a pseudo-header (see next slide)
• Urgent Pointer:

– Only valid if URG flag is set

Pseudo-header

• Make sure IP does not make a mistake and delivers a wrong
packet to the TCP module

• TCP length
– The length of the TCP segment, including both header and data. Note

that this is not a specific field in the TCP header; it is computed.

• If TCP length is odd in bytes, one pad byte of zero will be added
to the end for a 16-bit checksum computation

proto

32-bit source IP

32-bit dst IP

zero TCP len

Connection Management in TCP

• Opening a TCP Connection
• Closing a TCP Connection
• State Diagram

TCP Connection Establishment
• TCP uses a three-way handshake to open a

connection:

TCP Connection Termination
• Each end of the data flow must be shut down

independently (�half-close�)
• If one end is done it sends a FIN segment. The other

end sends ACK.
• Four messages to completely shut down a connection

FIN

ACK

ACK

FIN

A B

B can still send to AActive close
Passive close

TCP state diagram • Each square
denotes a state

• Each arc is a
transition

– Event/Action that
triggers the
transition

State Diagram

Summary

• UDP
– Datagram oriented service

• TCP
– Segment format
– Connection establishment and termination

Lab3 - Routing Information
Protocol

Topology

Architecture

Mininet

POX
controller

sr

Overview

Your task is to implement RIP within your router
so that your router will be able to do the
following:

1. Build the correct forwarding tables on the
assignment topology

2. Detect when routers join/or leave the topology and
correct the forwarding tables correctly

Actions required

• Download
– The latest code skeleton
– Test cases

• Start working on it now

What’s new
struct sr_if
{

char name[sr_IFACE_NAMELEN];
unsigned char addr[ETHER_ADDR_LEN];
uint32_t ip;
uint32_t speed;
uint32_t mask;
uint32_t status; /* 0 - interface down; 1 - interface up*/
struct sr_if* next;

};

Call function “uint32_t sr_obtain_interface_status(struct
sr_instance*, const char*)” to obtain the status of an interface

What’s new
How to obtain the interfaces’ status?
• Call the function uint32_t

sr_obtain_interface_status(struct sr_instance* sr,
const char* name)

• Example: uint32_t status =
sr_obtain_interface_status(sr, ‘eth1’)

status == 0 means the eth1 is down
status == 1 means the eth1 is up.

• After obtaining the status, you should also change
the interface’s status by yourself:

sr_if* interface = sr->if_list;
if (strcmp(interface->name, ‘eth1’) == 0)

interface->status = status.

What’s new

struct sr_rt
{

struct in_addr dest;
struct in_addr gw;
struct in_addr mask;
char interface[sr_IFACE_NAMELEN];
uint32_t metric;
time_t updated_time;
struct sr_rt* next;

};

What’s new

struct sr_rip_pkt {
uint8_t command;
uint8_t version; /* version = 2, RIPv2 */
uint16_t unused;
struct entry{

uint16_t afi; /* Address Family Identifier */
uint16_t tag; /*Route Tag */
uint32_t address; /* IP Address */
uint32_t mask; /* Subnet Mask */
uint32_t next_hop; /* Next Hop */
uint32_t metric; /* Metric */
} entries[MAX_NUM_ENTRIES]; # MAX_NUM_ENTRIES = 25

} __attribute__ ((packed)) ;
typedef struct sr_rip_pkt sr_rip_pkt_t;

What’s new

struct sr_udp_hdr {
uint16_t port_src, port_dst; /* source and dest port_number */
uint16_t udp_len; /* total length */
uint16_t udp_sum; /* checksum */

} __attribute__ ((packed)) ;
typedef struct sr_udp_hdr sr_udp_hdr_t;

Functions you need to implement

1. void *sr_rip_timeout(void *sr_ptr)

2. void send_rip_request(struct sr_instance *sr);

3. void send_rip_update(struct sr_instance *sr);

4. void update_route_table(struct sr_instance *sr, sr_ip_hdr_t* ip_packet,
sr_rip_pkt_t* rip_packet, char* iface);

All of these functions need to be implemented in sr_rt.c

Implementation details
1. This assignment uses RIP version 2. All the RIP request and RIP response

packets are sent using broadcast.

2. RIP uses UDP as its transport protocol, and is assigned the reserved port
number 520.

3. When your code starts, it will automatically call the function
send_rip_request.

4. When your router receives a RIP request packet, you should reply a RIP
response packet.

5. The function send_rip_update sends RIP response packets. You should
enable the split horizon here to alleviate the count-to-infinity problem.

Implementation details
6. The function sr_rip_timeout is called every 5 seconds,

to send the RIP response packets periodically. It
should also check the routing table and remove
expired route entry. If a route entry is not updated in
20 seconds, we will think it is expired.

7. The function update_route_table will be called after
receiving a RIP response packet. You should enable
triggered updates here. When the routing table
changes, the router will send a RIP response
immediately.

Suggested implementation plan
1. Get familiar with UDP header and RIPv2 Packets

2. Modify your sr_handlepacket function to add a mutex lock before you update
your routing table
– pthread_mutex_lock(&(sr->rt_lock)
– pthread_mutex_unlock(&(sr->rt_lock)

3. Implement the send_rip_request function

4. Implement the send_rip_response function

5. Test these two functions using Wireshark

6. Implement the update_route_table function

7. Implement the sr_rip_timeout function

8. Test, Test and Test.

RIPv2 Packet Format
IP header UDP header RIPv2 Message

Command Version Set to 00.00

IP address

Subnet Mask

address family route tag

Next-Hop IP address

metric (1-16) o
n

e
ro

u
te

 e
n

tr
y

(2
0

b
yt

es
)

Up to 24 more routes (each 20 bytes)

32 bits

Used to provide a
method of separating
"internal" RIP routes
(routes for networks
within the RIP routing
domain) from "external"
RIP routes

IP address of NextHop
router

2: RIPv2

Subnet mask for IP
address

