
ECE/COMPSCI 356 Computer Network
Architecture

Lecture 19: TCP Reliable Transmission

Neil Gong
neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

mailto:neil.gong@duke.edu

Roadmap

• Reliable transmission via sliding window
– Flow control
– When to transmit a segment
– Adaptive retransmission
– Modern extensions

Sliding window revisited

• Invariants
– LastByteAcked ≤ LastByteSent
– LastByteSent ≤ LastByteWritten
– LastByteRead < NextByteExpected
– NextByteExpected ≤ LastByteRcvd + 1

• Limited sending buffer and Receiving buffer

Sender Window Size Receiver Window Size

TCP Flow Control

• Q: how does a receiver prevent a sender from
overrunning its buffer?

• A: use AdvertisedWindow

IP header TCP header TCP data

Sequence number (32 bits)

DATA

20 bytes 20 bytes

 0 15 16 31

Source Port Number Destination Port Number

Acknowledgement number (32 bits)

window sizeheader
length 0 Flags

Options (if any)

TCP checksum urgent pointer

20 bytes

Invariants for flow control

• Receiver side:
– LastByteRcvd – LastByteRead ≤ MaxRcvBuf
– AdvertisedWindow = MaxRcvBuf –

((NextByteExpected - 1) – LastByteRead)

Invariants for flow control

• Sender side:
EffectiveWindow = AdvertisedWindow –
(LastByteSent – LastByteAcked)

– LastByteWritten – LastByteAcked ≤ MaxSndBuf
• Sender process would be blocked if send buffer is full

Window probes
• What if a receiver advertises a window size of

zero?
– Problem: Receiver can’t send more ACKs as sender

stops sending more data
• Communication gets stuck

• Solution
– Receiver sends duplicate ACKs when window opens
– Sender sends periodic 1 byte probes

• Why?
– Keeping the receive side simple à Smart sender/dumb

receiver

When to send a segment (assume
no flow control)?

• App writes bytes to a TCP socket
• TCP decides when to send a segment

• Design choices when window opens:
– Send whenever data available
– Send when collected Maximum Segment Size

(MSS) data
• More efficient

Push flag

• What if App is interactive, e.g. ssh?
– App sets the PUSH flag
– Flush the send buffer

Silly Window Syndrome

• Now considers flow control
– Window opens, but does not have MSS bytes

• Potential solution: send all it has
• E.g., sender sends 1 byte, receiver acks 1, acks opens

the window by 1 byte, sender sends another 1 byte, and
so on

• Silly Window Syndrome

How to avoid Silly Window
Syndrome

• Receiver side
– Do not advertise small window sizes

• Sender side
– Wait until it has a large segment to send
– Q: How long should a sender wait?

Sender-Side Silly Window
Syndrome avoidance

• Nagle’s Algorithm

• Interactive applications
may turn off Nagle’s
algorithm using the
TCP_NODELAY socket
option

When app has data to send
if data and window >= MSS

send a full segment
else

if there is unACKed data
buffer new data until ACK

else
send all the new data now

TCP window management
summary

• Receiver uses AdvertisedWindow for flow
control

• Sender sends probes when AdvertisedWindow
reaches zero

• Silly Window Syndrome avoidance
– Receiver: do not advertise small windows
– Sender: Nagle’s algorithm

Overview

• Reliable transmission via sliding window
– Flow control
– When to transmit a segment
– Adaptive retransmission
– Modern extensions

TCP Retransmission

• A TCP sender retransmits a segment when it
assumes that the segment has been lost

• How does a TCP sender detect a segment
loss?
– Timeout
– Selective ACKs

How to set the timer

• Challenge: RTT unknown and variable

• Too small
– Results in unnecessary retransmissions

• Too large
– Long waiting time

Estimating RTT

• Original Algorithm
– Measure SampleRTT for each segment/ ACK pair
– Compute weighted average of RTT

•EstRTT = a x EstRTT + (1 - a)x SampleRTT
- a between 0.8 and 0.9

– Set timeout based on EstRTT
•TimeOut = 2 x EstRTT

Estimating RTT

• Problem
– ACK does not really acknowledge a transmission

• It actually acknowledges the receipt of data

– When a segment is retransmitted and then an ACK
arrives at the sender

• It is impossible to decide if this ACK should be
associated with the first or the second transmission for
calculating RTTs

Illustration of the problem

Associating the ACK with (a) original transmission versus (b) retransmission

Karn/Partridge Algorithm to solve the problem

• Do not sample RTT when retransmitting
• Double timeout after each retransmission

Karn/Partridge Algorithm

• Karn-Partridge algorithm was an improvement
over the original approach, but it does not
eliminate congestion

• We need to understand how timeout is related
to congestion
– If you timeout too soon, you may unnecessarily

retransmit a segment which adds load to the
network

Karn/Partridge Algorithm

• Main problem
– variance of Sample RTTs is not considered.

• If the variance among Sample RTTs is small
– Then the Estimated RTT can be better trusted
– No need to multiply this by 2 to compute the

timeout

Karn/Partridge Algorithm

• A large variance in the samples suggest that
timeout value should not be tightly coupled to
the Estimated RTT

• Jacobson/Karels proposed a new scheme for
TCP retransmission

Jacobson/Karels Algorithm

• Difference = SampleRTT − EstimatedRTT
• EstimatedRTT = EstimatedRTT + (!× Difference)
• Deviation = Deviation + ! (|Difference| − Deviation)
• TimeOut = µ × EstimatedRTT + ϕ × Deviation

– ! is between 0 and 1
– Based on experience, µ is typically set to 1 and ϕ is set to 4.

Thus, when the variance is small, TimeOut is close to
EstimatedRTT; a large variance causes the deviation term
to dominate the calculation.

Overview

• Reliable transmission via sliding window
– Flow control
– When to transmit a segment
– Adaptive retransmission
– Modern extensions

Modern TCP extensions
• Timestamp

• Window scaling factor

• Protection Against Wrapped Sequence Numbers (PAWS)

• Selective Acknowledgement (SACK)

• References
– http://www.ietf.org/rfc/rfc1323.txt
– http://www.ietf.org/rfc/rfc2018.txt

http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc2018.txt

Options define the extensions

RTT estimate via timestamp

• Sender includes a timestamp in a segment

• Receiver echoes the timestamp in an ACK

• RTT for a segment = current_time – timestamp
in ACK

TCP window size is small

• 16-bit window size
• Maximum send window <= 65535B
• Suppose a RTT is 100ms
• Max TCP throughput = 65KB/100ms = 5Mbps
• Not good enough for modern high speed links!

IP header TCP header TCP data

Sequence number (32 bits)

DATA

20 bytes 20 bytes

 0 15 16 31

Source Port Number Destination Port Number

Acknowledgement number (32 bits)

window sizeheader
length 0 Flags

Options (if any)

TCP checksum urgent pointer

20 bytes

Solution: Window scaling option

• Scale windows by a factor
– Each unit is 2 bytes instead of one byte
– Each unit is 4 bytes instead of one byte

Sequence number wraps around

Time until 32-bit sequence number space wraps around.

• 32-bit sequence number space
• TCP requires no wrap around in 120-second period of time (life

time of a packet on the Internet)
• Sequence numbers may wrap around in 120-second period of

time for high speed link

Solution: Compare timestamp

• Receiver keeps the segment with the latest
timestamp

• Discard duplicate segments with old
timestamps

Selective Acknowledgement

• Ack the received blocks even if not contiguous

Duplicate and Selective
Acknowledgement

Summary

• Reliable transmission via sliding window
– Flow control
– When to transmit a segment
– Adaptive retransmission
– Modern extensions

