ECE/COMPSCI 356 Computer Network
Architecture

Lecture 20: TCP Congestion Control

Neil Gong
neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

mailto:neil.gong@duke.edu

Overview

« Additive increase multiplicative decrease
* Slow start

 Fast retransmit and fast recovery

Congestion Control

« Different TCP connections compete for resources

— Bandwidth of the links
— Buffers at the routers and switches

 Packets contend at a router for the use of a link

* Contending packets are placed 1n a queue

Congestion Control

 When too many packets are contending for the same
link
— The queue overflows

— Packets get dropped

* Network 1s congested!

* Network should provide a congestion control
mechanism to deal with such a situation

* TCP enables a sender to dynamically adjust its
sending speed for congestion control

TCP congestion control

 Introduced in the late 1980s by Van Jacobson
— Eight years after the TCP/IP had become operational.

» Before this, the Internet suffered from congestion
collapse
— hosts send as fast as the advertised window would allow

— congestion would occur at some router, causing packets to
be dropped

— hosts time out and retransmit, resulting in even more
congestion

TCP congestion control

e The 1dea: a sender determines network capacity and
adjusts sending speed
— How can a sender know 1t 1s safe to send more packets?
— Uses the arrival of an ACK as a signal

— By using ACKSs to pace the transmission of packets, TCP 1s
said to be self-clocking.

CongestionWindow

* A new state variable: CongestionWindow
— limit how much data a sender can have 1n transit.
— congestion control’s counterpart to flow control’s
AdvertisedWindow.
 Maximum number of unacknowledged bytes is the

minimum of the CongestionWindow and the
AdvertisedWindow

New effective window

« TCP’s effective window 1s revised as follows:

— MaxWindow = MIN(CongestionWindow,
AdvertisedWindow)

— EffectiveWindow = MaxWindow — (LastByteSent —
LastByteAcked).
 MaxWindow replaces AdvertisedWindow when
calculating EffectiveWindow.

* A sender sends no faster than the slowest
component—the network or the destination host—
can accommodate.

How to determine

CongestionWindow size
 Unlike AdvertisedWindow

— Sent by receiver

* Sender sets CongestionWindow based on the level of
congestion 1t perceives to exist in the network.

« Additive increase/multiplicative decrease (AIMD)

— Decreasing CongestionWindow when the level of
congestion goes up

— Increasing CongestionWindow when the level of
congestion goes down.

When to decrease
CongestionWindow?

* Main reason for timeout: congestion/dropped packets

* Therefore, timeout 1s a sign of congestion and
CongestionWindow reduces
e Each time a timeout occurs

— CongestionWindow reduces by half
« “multiplicative decrease” part of AIMD

When to decrease
CongestionWindow?

* CongestionWindow 1s defined 1n terms of bytes

» Easier to understand multiplicative decrease if we
think 1n terms of whole packets.

— E.g., suppose the CongestionWindow 1s currently set to 16
packets. If a timeout, CongestionWindow 1s set to 8.

— Additional timeouts cause CongestionWindow to be
reduced to 4, then 2, and finally to 1 packet.

— CongestionWindow is not allowed to fall below the size of
a single packet, or the maximum segment size (MSS).

When to increase
CongestionWindow

* Every time the sender successfully sends a
CongestionWindow’s worth of packets

— 1.e., each packet sent out during the last RTT has been
ACKed

— 1t adds the equivalent of 1 packet to CongestionWindow.

« “additive increase” part of Al

[1lustration

Source Destination

WAV

Packets in transit during additive izncrease, with one packet being
added each RTT.

When to increase
CongestionWindow

In practice, sender does not wait for an entire window’s worth
of ACKs to add 1 packet to CongestionWindow

Increment CongestionWindow by a little for each ACK.

CongestionWindow is incremented each time an ACK arrives:
— Increment = MSS x (MSS/CongestionWindow)
— CongestionWindow+= Increment

— Rather than incrementing CongestionWindow by an entire MSS
bytes each RTT, we increment it by a fraction of MSS every
time an ACK is received.

— Assuming that each ACK acknowledges the receipt of MSS
bytes, then that fraction i1s MSS/CongestionWindow.

Problem of additive increase

e [t takes too long to ramp up a connection when
starting from scratch

— CongestionWindow is initialized as 1.

e Solution: slow start.

— Increases CongestionWindow exponentially, rather than
linearly.

Slow Start

» Sender 1nitializes CongestionWindow as one packet.

e Upon recerving an ACK, increments
CongestionWindow by 1.

* Sender doubles the number of packets every RTT.

Slow Start

Source Destination

\

A

\
0
o

A
RO

Packets in transit during slow start.

When to use slow start — situation 1

* Very beginning of a connection.

— slow start continues to increment CongestionWindow by 1
packet each ACK until a timeout occurs

When to use slow start — situation 2

e A timeout occurs

— multiplicative decrease to divide CongestionWindow by 2.
« Variable CongestionThreshold = CongestionWindow/2

— CongestionWindow initializes as 1 packet

— Increment by 1 packet every ACK until reaching
CongestionThreshold

— After that, additive increase

When to use slow start — situation 2

— CongestionWindow increases as follows upon receiving an
ACK:

u_int cw = state->CongestionWindow;

u_int incr = state->maxseg;

if (cw > state->CongestionThreshold)
incr = incr * incr / cw;

state->CongestionWindow = MIN(cw + incr,
TCP_MAXWIN);

* state represents the state of a TCP connection and TCP. MAXWIN
is upper bound of CongestionWindow.

CongestionWindow over time

Slowlstart CongestionThreshold
J

. AN N

1.0 2.0 3.0 \ 4.0 5.0 \6.0\ 7.0 8.0 9.0

Additive iH&E588) Additive increase
Slow start Slow start

Behavior of TCP congestion control. Colored line = value of
CongestionWindow over time; solid bullets at top of graph =
timeouts; hash marks at top of graph = time when each packet is
transmitted; vertical bars = time when a packet that was
eventually retransmitted was first transmitted.

Fast Retransmit

* Problem: long waiting time before timeout.
» Solution: fast retransmit was added to TCP.

— A heuristic that sometimes triggers retransmission sooner
than timeout.

Fast Retransmit

* Recerver resends the same acknowledgment it sent
the last time when receiving an out of order packet
— Called duplicate ACK
— Used together with selective ACK

* Sender knows earlier packet might have been lost
when seeing a duplicate ACK.

* Sender waits until 1t has seen three duplicate ACKs
before retransmitting the packet.
— In case the packet 1s delayed instead of being dropped

— Slow start or additive increase for CongestionWindow

Fast Retransmit

[]
70- i L A e R T T T T e T R A
m 40 .
X
30

T T 1

T
1.0 2.0 3.0 &) 5.0 6.0 7.0
Time (second

Fast retransmit is triggered
Slow start to increment CongestionWindow

Trace of TCP with fast retransmit. Colored line = CongestionWindow;
solid bullet = timeout; hash marks = time when each packet is transmitted;
vertical bars = time when a packet that was eventually retransmitted was
first transmitted.

Fast Recovery

* Problem: when fast retransmit 1s triggered,
congestion 1s not too bad (compared to timeout)

— But slow start resets CongestionWindow to be 1 and
increments it

— Does not leverage network capacity

* Solution: fast recovery uses the following
CongestionWindow

— Initialized as CongestionThreshold
— additive increase

Summary

« Additive increase multiplicative decrease
* Slow start

 Fast retransmit and fast recovery

