
ECE/COMPSCI 356 Computer Network
Architecture

Lecture 20: TCP Congestion Control

Neil Gong
neil.gong@duke.edu

Slides credit: Xiaowei Yang, PD

mailto:neil.gong@duke.edu

Overview

• Additive increase multiplicative decrease
• Slow start
• Fast retransmit and fast recovery

Congestion Control

• Different TCP connections compete for resources
– Bandwidth of the links
– Buffers at the routers and switches

• Packets contend at a router for the use of a link

• Contending packets are placed in a queue

Congestion Control

• When too many packets are contending for the same
link
– The queue overflows
– Packets get dropped

• Network is congested!

• Network should provide a congestion control
mechanism to deal with such a situation

• TCP enables a sender to dynamically adjust its
sending speed for congestion control

TCP congestion control

• Introduced in the late 1980s by Van Jacobson
– Eight years after the TCP/IP had become operational.

• Before this, the Internet suffered from congestion
collapse
– hosts send as fast as the advertised window would allow
– congestion would occur at some router, causing packets to

be dropped
– hosts time out and retransmit, resulting in even more

congestion

TCP congestion control

• The idea: a sender determines network capacity and
adjusts sending speed
– How can a sender know it is safe to send more packets?
– Uses the arrival of an ACK as a signal
– By using ACKs to pace the transmission of packets, TCP is

said to be self-clocking.

CongestionWindow

• A new state variable: CongestionWindow
– limit how much data a sender can have in transit.
– congestion control’s counterpart to flow control’s

AdvertisedWindow.

• Maximum number of unacknowledged bytes is the
minimum of the CongestionWindow and the
AdvertisedWindow

New effective window

• TCP’s effective window is revised as follows:
– MaxWindow = MIN(CongestionWindow,

AdvertisedWindow)
– EffectiveWindow = MaxWindow − (LastByteSent −

LastByteAcked).

• MaxWindow replaces AdvertisedWindow when
calculating EffectiveWindow.

• A sender sends no faster than the slowest
component—the network or the destination host—
can accommodate.

How to determine
CongestionWindow size

• Unlike AdvertisedWindow
– Sent by receiver

• Sender sets CongestionWindow based on the level of
congestion it perceives to exist in the network.

• Additive increase/multiplicative decrease (AIMD)
– Decreasing CongestionWindow when the level of

congestion goes up
– Increasing CongestionWindow when the level of

congestion goes down.

When to decrease
CongestionWindow?

• Main reason for timeout: congestion/dropped packets
• Therefore, timeout is a sign of congestion and

CongestionWindow reduces
• Each time a timeout occurs

– CongestionWindow reduces by half
• “multiplicative decrease” part of AIMD

When to decrease
CongestionWindow?

• CongestionWindow is defined in terms of bytes
• Easier to understand multiplicative decrease if we

think in terms of whole packets.
– E.g., suppose the CongestionWindow is currently set to 16

packets. If a timeout, CongestionWindow is set to 8.
– Additional timeouts cause CongestionWindow to be

reduced to 4, then 2, and finally to 1 packet.
– CongestionWindow is not allowed to fall below the size of

a single packet, or the maximum segment size (MSS).

When to increase
CongestionWindow

• Every time the sender successfully sends a
CongestionWindow’s worth of packets
– i.e., each packet sent out during the last RTT has been

ACKed
– it adds the equivalent of 1 packet to CongestionWindow.

• “additive increase” part of AIMD

Illustration

Packets in transit during additive increase, with one packet being
added each RTT.

When to increase
CongestionWindow

• In practice, sender does not wait for an entire window’s worth
of ACKs to add 1 packet to CongestionWindow

• Increment CongestionWindow by a little for each ACK.
• CongestionWindow is incremented each time an ACK arrives:

– Increment = MSS × (MSS/CongestionWindow)
– CongestionWindow+= Increment
– Rather than incrementing CongestionWindow by an entire MSS

bytes each RTT, we increment it by a fraction of MSS every
time an ACK is received.

– Assuming that each ACK acknowledges the receipt of MSS
bytes, then that fraction is MSS/CongestionWindow.

Problem of additive increase

• It takes too long to ramp up a connection when
starting from scratch
– CongestionWindow is initialized as 1.

• Solution: slow start.
– Increases CongestionWindow exponentially, rather than

linearly.

Slow Start

• Sender initializes CongestionWindow as one packet.
• Upon receiving an ACK, increments

CongestionWindow by 1.
• Sender doubles the number of packets every RTT.

Slow Start

Packets in transit during slow start.

When to use slow start – situation 1

• Very beginning of a connection.
– slow start continues to increment CongestionWindow by 1

packet each ACK until a timeout occurs

When to use slow start – situation 2

• A timeout occurs
– multiplicative decrease to divide CongestionWindow by 2.

• Variable CongestionThreshold = CongestionWindow/2

– CongestionWindow initializes as 1 packet
– Increment by 1 packet every ACK until reaching

CongestionThreshold
– After that, additive increase

When to use slow start – situation 2

– CongestionWindow increases as follows upon receiving an
ACK:

u_int cw = state->CongestionWindow;
u_int incr = state->maxseg;
if (cw > state->CongestionThreshold)

incr = incr * incr / cw;
state->CongestionWindow = MIN(cw + incr,

TCP_MAXWIN);

• state represents the state of a TCP connection and TCP_MAXWIN
is upper bound of CongestionWindow.

CongestionWindow over time

Behavior of TCP congestion control. Colored line = value of
CongestionWindow over time; solid bullets at top of graph =
timeouts; hash marks at top of graph = time when each packet is
transmitted; vertical bars = time when a packet that was
eventually retransmitted was first transmitted.

Slow start
Additive increase

Slow start

CongestionThreshold

Additive increase

Slow start

Fast Retransmit
• Problem: long waiting time before timeout.
• Solution: fast retransmit was added to TCP.

– A heuristic that sometimes triggers retransmission sooner
than timeout.

Fast Retransmit

• Receiver resends the same acknowledgment it sent
the last time when receiving an out of order packet
– Called duplicate ACK
– Used together with selective ACK

• Sender knows earlier packet might have been lost
when seeing a duplicate ACK.

• Sender waits until it has seen three duplicate ACKs
before retransmitting the packet.
– In case the packet is delayed instead of being dropped
– Slow start or additive increase for CongestionWindow

Fast Retransmit

Trace of TCP with fast retransmit. Colored line = CongestionWindow;
solid bullet = timeout; hash marks = time when each packet is transmitted;
vertical bars = time when a packet that was eventually retransmitted was
first transmitted.

Fast retransmit is triggered
Slow start to increment CongestionWindow

Fast Recovery

• Problem: when fast retransmit is triggered,
congestion is not too bad (compared to timeout)
– But slow start resets CongestionWindow to be 1 and

increments it
– Does not leverage network capacity

• Solution: fast recovery uses the following
CongestionWindow
– Initialized as CongestionThreshold
– additive increase

Summary

• Additive increase multiplicative decrease
• Slow start
• Fast retransmit and fast recovery

