
ECE/COMPSCI 356 Computer
Network Architecture

Lecture 23: TCP Security

Neil Gong
neil.gong@duke.edu

Slides credit: Vern Paxson, Dawn Song

mailto:neil.gong@duke.edu

Overview

• TCP disruption
• TCP injection
• TCP spoofing
• SYN flooding

– DoS

2

3

• Normally, TCP finishes (�closes�) a connection
by each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other �peer� is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct sequence

number

TCP Threat: Disruption

4

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

5

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen

RST0

Checksum Urgent pointer

Options (variable)

Data

6

Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B
– E.g., because application process on A crashed

• Assuming that the sequence numbers in the RST fit with what B
expects
– No further communication on connection is possible

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

7

• Normally, TCP finishes (�closes�) a connection
by each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other �peer� is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct sequence

number

• So: if attacker knows ports & sequence numbers,
can disrupt any TCP connection

TCP Threat: Disruption

8

TCP Threat: Injection

• What about inserting data rather than disrupting a connection?
– Again, all that’s required is attacker knows correct ports, seq. numbers

• Termed TCP connection hijacking (or �session hijacking�)
– General means to take over an already-established connection!

• If an attacker can see our TCP traffic?
– Then they immediately know the port & sequence numbers

• If not, guess the port & sequence numbers

SY
N

SY
N

 A
CK

A
CK

D
at

a A
CK

time
A

B

N
as

ty
 D

at
a

N
as

ty
 D

at
a2

9

TCP Threat: Injection via Spoofing

• Create a fake connection, rather than inject into a
real one
– Why?
– Leverage a server’s trust of a given client as identified

by its IP address
– The attacker can’t be traced back

10

TCP Threat: Spoofing

Client (1.2.3.4) Server (5.6.7.8)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Each host tells its Initial
Sequence Number (ISN)
to the other host.

(Spec says to pick based on
local clock)

• TCP connection establishment:

• How can an attacker create an apparent but fake
connection from 1.2.3.4 to 5.6.7.8?

11

Spoofing: Attacker�s Viewpoint

Client? (1.2.3.4) Server (5.6.7.8)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Each host tells its Initial
Sequence Number (ISN)
to the other host.

(Spec says to pick based on
local clock)

Attacker can
spoof this

But
can�t

see this

So how do they
know what to

put here?
Hmm, any way
for the attacker
to know this?

Sure - make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use A Random ISN

Attacker

12

Denial-of-Service (DoS) Attacks

Attacks on Availability

• Denial-of-Service (DoS)
• Preventing legitimate users from using a service
• DDoS: Distributed Denial-of-Service

– Attacks from multiple hosts on the Internet

• We need to consider our threat model
– What might motivate a DoS attack?

Motivations for DoS
• Showing off / entertainment / ego
• Competitive advantage
–Maybe commercial, maybe just to win

• Economic benefits
• Political statements
• Cyber warfare

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
–Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers)Attacker doesn’t

even need to
send this ack

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake

–Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force

the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with

connection here

(buffers, timers)Attacker doesn’t
even need to
send this ack

TCP SYN Flooding
• Attacker targets memory of the server

• Every (unique) SYN that the attacker sends burdens
the target

• What should target do when it has no more memory for
a new connection?
– No good answer
– Refuse new connection?

o Legit new users can’t access service
– Evict old connections to make room?

o Legit old users get kicked off

TCP SYN Flooding Defense
• How can the target defend itself?

• Approach #1: tons of memory
– How much is enough?
– Depends on resources attacker can bring to bear,

which might be hard to know

TCP SYN Flooding Defense

• Approach #2: identify bad actors & refuse

connections

–Hard because identification is on IP address

–For a public Internet service, who knows which

addresses customers might come from?

–Plus: attacker can spoof addresses since they don’t

need to complete TCP 3-way handshake

• Approach #3: don’t keep state!

– “SYN cookies”; only works for spoofed SYN flooding

–Attacker can use botnet to launch DDoS

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping

state locally, send it to the client …

• Client needs to return the state in order to

establish connection

Server only saves

state here

Do not save state

here; give to client

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping

state locally, send it to the client …

• Client needs to return the state in order to

established connection

Server only saves

state here

Do not save state

here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to

add a new <State> field like this.

Is there any way to get the same

functionality without having to

change TCP?

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection
state entirely within SYN-ACK’s sequence # y
– y = encoding of necessary state

• When ACK of SYN-ACK arrives, server creates
state

Server only creates
state here

Do not create
state here

Instead, encode it here

SYN Cookies: Discussion

• Illustrates general strategy: rather than holding
state, encode it so that it is returned when
needed

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
–Can’t use spoofed source addresses

• Note #1: strategy requires that you have
enough bits to encode all the state

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

Application-Layer DoS

• Rather than exhausting memory resources, attacker can
overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

The link sends a request to the web server that
requires heavy processing by its �backend database�.

Algorithmic complexity attacks
• Attacker can try to trigger worst-case complexity

of algorithms / data structures
• Example: You have a hash table.

Expected time: !(1)Worst-case: !(%)
• Attacker picks inputs that cause hash collisions.

Time per lookup: !(%)
Total time to do % operations: !(%&)

• Solution? Use algorithms with good worst-case
running time.

Summary
• TCP disruption

• TCP injection

• TCP spoofing

• SYN flooding
–DoS

30

