
3

Attribute Inference Attacks in Online Social Networks
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We propose new privacy attacks to infer attributes (e.g., locations, occupations, and interests) of online social

network users. Our attacks leverage seemingly innocent user information that is publicly available in online

social networks to infer missing attributes of targeted users. Given the increasing availability of (seemingly

innocent) user information online, our results have serious implications for Internet privacy—private at-

tributes can be inferred from users’ publicly available data unless we take steps to protect users from such

inference attacks. To infer attributes of a targeted user, existing inference attacks leverage either the user’s

publicly available social friends or the user’s behavioral records (e.g., the web pages that the user has liked

on Facebook, the apps that the user has reviewed on Google Play), but not both. As we will show, such

inference attacks achieve limited success rates. However, the problem becomes qualitatively different if we

consider both social friends and behavioral records. To address this challenge, we develop a novel model to

integrate social friends and behavioral records, and design new attacks based on our model. We theoreti-

cally and experimentally demonstrate the effectiveness of our attacks. For instance, we observe that, in a

real-world large-scale dataset with 1.1 million users, our attack can correctly infer the cities a user lived in for

57% of the users; via confidence estimation, we are able to increase the attack success rate to over 90% if the

attacker selectively attacks half of the users. Moreover, we show that our attack can correctly infer attributes

for significantly more users than previous attacks.
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1 INTRODUCTION

Online social networks (e.g., Facebook, Google+, and Twitter) have become increasingly important
platforms for users to interact with each other, process information, and diffuse social influence.
A user in an online social network essentially has a list of social friends, a digital record of behav-
iors, and a profile. For instance, behavioral records could be a list of pages liked or shared by the
user on Facebook, or they could be a set of mobile apps liked or rated by the user in Google+ or
Google Play. A profile introduces the user’s self-declared attributes such as majors, employers, and
cities lived. To address users’ privacy concerns, online social network operators provide users with

This is an extended version of Reference [22], which appeared in 2016 USENIX Security Symposium.

Authors’ addresses: N. Z. Gong, Department of Electrical and Computer Engineering, Iowa State University, 307 Durham

Center, Iowa State University, Ames, IA 50010; email: neilgong@iastate.edu; B. Liu, IBM Thomas J. Watson Research Center,

1101 Kitchawan Rd, Yorktown Heights, NY 10598; email: bin.liu1@ibm.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 2471-2566/2018/01-ART3 $15.00

https://doi.org/10.1145/3154793

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 3. Publication date: January 2018.

https://doi.org/10.1145/3154793
mailto:permissions@acm.org
https://doi.org/10.1145/3154793


3:2 N. Z. Gong and B. Liu

fine-grained privacy settings, e.g., a user could limit some attributes to be accessible only to his/her
friends. Moreover, a user could also create an account without providing any attribute information.
As a result, an online social network is a mixture of both public and private user information.

One privacy attack of increasing interest revolves around these user attributes [10, 15, 23, 27,
35, 36, 40, 42, 46, 57, 60, 64]. In this attribute inference attack, an attacker aims to propagate at-
tribute information of social network users with publicly visible attributes to users with missing
or incomplete attribute data. Specifically, the attacker could be any party (e.g., cyber criminal, on-
line social network provider, advertiser, data broker, and surveillance agency) who has interests
in users’ private attributes. To perform such privacy attacks, the attacker only needs to collect
publicly available data from online social networks. Apart from privacy risks, the inferred user
attributes can also be used (by the attacker or any party who obtains the inferred attributes from
the attacker) to perform various security-sensitive activities such as spear phishing [29, 54] and at-
tacking personal-information-based backup authentication [26]. Moreover, an attacker can lever-
age the inferred attributes to link online users across multiple sites [2, 5, 19, 20] or with offline
records (e.g., publicly available voter registration records) [45, 56] to form detailed and composite
user profiles, which results in even bigger security and privacy risks.

Existing attribute inference attacks can be roughly classified into two categories, friend-

based [15, 23, 27, 36, 40, 46, 57, 64] and behavior-based [10, 35, 42, 60]. Friend-based attacks are
based on the intuition of you are who you know. Specifically, they aim to infer attributes for a user
using the publicly available user attributes of the user’s friends (or all other users in the social net-
work) and the social structure among them. The foundation of friend-based attacks is homophily,
meaning that two linked users share similar attributes [43]. For instance, if more than half of friends
of a user major in computer science at a certain university, the user might also major in computer
science at the same university with a high probability. Behavior-based attacks infer attributes for a
user based on the public attributes of users that are similar to him/her, and the similarities between
users are identified by using their behavioral data. The intuition behind behavior-based attacks is
you are how you behave. In particular, users with the same attributes have similar interests, charac-
teristics, and cultures so that they have similar behaviors. For instance, if a user liked apps, books,
and music tracks on Google Play that are similar to those liked by users originally from China,
the user might also be from China. Likewise, a previous measurement study [61] found that some
apps are only popular in certain cities, implying the possibility of inferring cities a user lived in
using the list of apps the user used or liked.

However, these inference attacks consider either social friendship structures or user behaviors,
but not both, and thus they achieve limited inference accuracy as we will show in our experiments.
Moreover, the problem of inferring user attributes becomes qualitatively different if we consider
both social structures and user behaviors because features derived from them differ from each
other, show different sparsity, and are at different scales. We show in our evaluation that sim-
ply concatenating features from the two sources of information regresses the overall results and
reduces attack success rates.

In this article, we aim to combine social structures and user behaviors to infer user attributes. To
this end, we first propose a social-behavior-attribute (SBA) network model to gracefully integrate
social structures, user behaviors, and user attributes in a unified framework. Specifically, we add
additional nodes to a social structure, each of which represents an attribute or a behavior; a link
between a user and an attribute node means that the user has the corresponding attribute, and a
user has a behavior if it is encoded by a link between the user and the corresponding behavior node.

Second, we design a vote distribution attack (VIAL) under the SBA network model to perform
attribute inference. Specifically, VIAL iteratively distributes a fixed vote capacity from a targeted

user whose attributes we want to infer to all other users in the SBA network. A user receives a
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high vote capacity if the user and the targeted user are structurally similar in the SBA network,
e.g., they have similar social structures and/or have performed similar behaviors. Then, each user
votes for its attributes via dividing its vote capacity to them. We predict the target user to own
attributes that receive the highest votes.

Third, we evaluate VIAL both theoretically and empirically, and we extensively compare VIAL
with several previous attacks for inferring majors, employers, and locations using a large-scale
dataset with 1.1 million users that we collected from Google+ and Google Play. For instance, we
observe that our attack can correctly infer the cities a user lived in for 57% of the users; via con-

fidence estimation, we are able to increase the success rate to over 90% if the attacker selectively
attacks half of the users. Moreover, we find that our VIAL substantially outperforms previous at-
tacks. Specifically, for precision, VIAL improves upon friend-based attacks and behavior-based
attacks by over 20% and around 100%, respectively. These results imply that an attacker can use
our attack to successfully infer private attributes of substantially more users than previous attacks.

In summary, our key contributions are as follows:

—We propose the SBA network model to integrate social structures, user behaviors, and user
attributes.

—We design the VIAL under the SBA network model to perform attribute inference.
—We demonstrate the effectiveness of VIAL both theoretically and empirically. Moreover, we

compare VIAL with several previous attacks using a large-scale dataset that we collected
from Google+ and Google Play. We observe that VIAL can correctly infer attributes for
substantially more users than previous attacks.

2 PROBLEM DEFINITION AND THREAT MODEL

Attackers. The attacker could be any party who has interests in user attributes. For instance, the
attacker could be a cyber criminal, online social network provider, advertiser, data broker, or
surveillance agency. Cyber criminals can leverage user attributes to perform targeted social engi-
neering attacks (now often referred to as spear phishing attacks [29, 54]) and attacking personal-
information-based backup authentication [26]; online social network providers and advertisers
could use the user attributes for targeted advertisements; data brokers make profit via selling the
user attribute information to other parties such as advertisers, banking companies, and insurance
industries [18]; and surveillance agency can use the attributes to identify users and monitor their
activities.

Collecting publicly available social structures and behaviors. To perform attribute inference at-
tacks, an attacker first needs to collect publicly available information. In particular, in our attacks,
an attacker needs to collect social structures, user profiles, and user behaviors from online social
networks. Such information can be collected via writing web crawlers or leveraging APIs devel-
oped by the service providers. Next, we formally describe this publicly available information.

We use an undirected1 graph Gs = (Vs ,Es ) to represent a social structure, where edges in Es

represent social relationships between the nodes in Vs . We denote by Γu,S = {v |(u,v ) ∈ Es } as the
set of social neighbors ofu. In addition to social network structure, we have behaviors and categor-
ical attributes for nodes. For instance, in our Google+ and Google Play dataset, nodes are Google+
users, and edges represent friendship between users; behaviors include the set of items (e.g., apps,
books, and movies) that users rated or liked on Google Play; and node attributes are derived from
user profile information and include fields such as major, employer, and cities lived.

We use binary representation for user behaviors. Specifically, we treat various objects (e.g., the
Android app Angry Birds, the movie The Lord of the Rings, and the website Facebook.com) as

1Our attacks can also be generalized to directed graphs.
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binary variables, and we denote bymb the total number of objects. Behaviors of a node u are then

represented as amb -dimensional binary column vector �bu with the ith entry equal to 1 whenu has
performed a certain action on the ith object (positive behavior) and −1 when u does not perform
the action on it (negative behavior). For instance, when we consider user review behaviors for
Google+ users, objects could be items such as apps, books, and movies available in Google Play, and
the action is review; 1 represents that the user reviewed the corresponding item and -1 means the
opposite. For Facebook users, objects could be web pages; 1 represents that the user liked or shared

the corresponding web page and -1 means that the user did not. We denote by B = [�b1
�b2 · · · �bns

]
the behavior matrix for all nodes.

We distinguish between attributes and attribute values. For instance, major, employer, and lo-
cation are different attributes; and each attribute could have multiple attribute values, e.g., major
could be computer science, biology, or physics. A user might own a few attribute values for a sin-
gle attribute. For example, a user that studies physics for undergraduate education but chooses to
pursue a Ph.D. degree in computer science has two values for the attribute major. Again, we use
a binary representation for each attribute value, and we denote the number of distinct attribute
values as ma . Then attribute information of a node u is represented as a ma-dimensional binary
column vector �au with the ith entry equal to 1 whenu has the ith attribute value (positive attribute)
and −1 when u does not have it (negative attribute). We denote by A = [�a1 �a2 · · · �ans

] the attribute
matrix for all nodes.

Attribute inference attacks. Roughly speaking, an attribute inference attack is to infer the at-
tributes of a set of targeted users using the collected publicly available information. Formally, we
define an attribute inference attack as follows:

Definition 2.1 (Attribute Inference Attack). Suppose we are givenT = (Gs ,A,B), which is a snap-
shot of a social network Gs with a behavior matrix B and an attribute matrix A, and a list of tar-

geted users Vt with social friends Γv,S and binary behavior vectors �bv for all v ∈ Vt , the attribute
inference attack is to infer the attribute vectors �av for all v ∈ Vt .

We note that a user setting the friend list to be private could also be vulnerable to inference
attacks. This is because the user’s friends could set their friend lists publicly available. The attacker
can collect a social relationship between two users if at least one of them sets the friend list to be
public. Moreover, we assume the users and the service providers are not taking other steps (e.g.,
obfuscating social friends [28] or behaviors [13, 53, 60]) to defend against inference attacks.

Applying inferred attributes to link users across multiple online social networks and with offline

records. We stress that an attacker could leverage our attribute inference attacks to further perform
other attacks. For instance, a user might provide different attributes on different online social
networks. Thus, an attacker could combine user attributes across multiple online social networks
to better profile users, and an attacker could leverage the inferred user attributes to do so [2, 5,
19, 20]. Moreover, an attacker can further use the inferred user attributes to link online users with
offline records (e.g., voter registration records) [45, 56], which results in even bigger security and
privacy risks, e.g., more sophisticated social engineering attacks. We note that even if the inferred
user attributes (e.g., major, employer) seem not private for some targeted users, an attacke\r could
use them to link users across multiple online sites and with offline records.

3 SOCIAL-BEHAVIOR-ATTRIBUTE FRAMEWORK

We describe our social-behavior-attribute (SBA) network model, which integrates social structures,
user behaviors, and user attributes in a unified framework. To perform our inference attacks, an
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Fig. 1. Illustration of social-behavior-attribute network.

attacker needs to construct an SBA network to represent his/her collected publicly available social
structures, user attributes, and behaviors.

Given a social networkGs = (Vs ,Es ) withmb behavior objects, a behavior matrix B,ma distinct
attribute values, and an attribute matrix A, we create an augmented network by adding mb addi-
tional nodes toGs , with each node corresponding to a behavior object, and anotherma additional
nodes to Gs , with each additional node corresponding to an attribute value. For each node u in
Gs with positive attribute a or positive behavior b, we create an undirected link between u and
the additional node corresponding to a or b in the augmented network. Moreover, we add the tar-
geted users into the augmented network by connecting them to their friends and the additional
nodes corresponding to their positive behaviors. We call this augmented network social-behavior-

attribute (SBA) network since it integrates the interactions among social structures, user behaviors,
and user attributes. We note that the SBA network model extends our social-attribute-network
(SAN) model [23] by further including behavior information into the framework.

Nodes in the SBA framework corresponding to nodes in Gs or targeted users in Vt are called
social nodes, nodes representing behavior objects are called behavior nodes, and nodes representing
attribute values are called attribute nodes. Moreover, we use S , B, andA to represent the three types
of nodes, respectively. Links between social nodes are called social links, links between social nodes
and behavior nodes are called behavior links, and links between social nodes and attribute nodes
are called attribute links. Note that there are no links between behavior nodes and attribute nodes.
Figure 1 illustrates an example SBA network, in which the two social nodes u5 and u6 correspond
to two targeted users. The behavior nodes in this example correspond to Android apps, and a
behavior link represents that the corresponding user used the corresponding app. Intuitively, the
SBA framework explicitly describes the sharing of behaviors and attributes across social nodes.
Moreover, under the SBA framework, attribute inference involves predicting attribute links.

We also place weights on various links in the SBA framework. These link weights balance the
influence of social links versus behavior links versus attribute links.2 For instance, weights on so-
cial links could represent the tie strengths between social nodes. Users with stronger tie strengths

2In principle, we could also assign weights to nodes to incorporate their relative importance. However, our attack does not

rely on node weights, so we do not discuss them.

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 3. Publication date: January 2018.



3:6 N. Z. Gong and B. Liu

could be more likely to share the same attribute values. The weight on a behavior link could indi-
cate the predictiveness of the behavior in terms of the user’s attributes. In other words, a behav-
ior link with a higher weight means that performing the corresponding behavior better predicts
the attributes of the user. For instance, if we want to predict user gender, the weight of the link
between a female user and a mobile app tracking women’s monthly periods could be larger than
the weight of the link between a male user and the app. Weights on attribute links can represent
the degree of affinity between users and attribute values. For instance, an attribute link connect-
ing the user’s hometown could have a higher weight than the attribute link connecting a city
where the user once travelled. We discuss how link weights can be learnt via machine learning in
Section 8.

We denote an SBA network as G = (V ,E,w, t ), where V is the set of nodes, n = |V | is the total
number of nodes, E is the set of links, m = |E | is the total number of links, w is a function that
maps a link to its link weight, i.e., wuv is the weight of link (u,v ), and t a function that maps a
node to its node type, i.e., tu is the node type of u. For instance, tu = S means that u is a social
node. Additionally, for a given node u in the SBA network, we denote by Γu , Γu,S , Γu,B , and Γu,A,
respectively, the sets of all neighbors, social neighbors, behavior neighbors, and attribute neighbors

of u. Moreover, for links that are incident from u, we use du , du,S , du,B , and du,A to denote the
sum of weights of all links, weights of links connecting social neighbors, weights of links connect-
ing behavior neighbors, and weights of links connecting attribute neighbors, respectively. More
specifically, we have du =

∑
v ∈Γu

wuv and du,Y =
∑

v ∈Γu,Y
wuv , where Y = S,B,A.

Furthermore, we define two types of hop-2 social neighbors of a social node u, which share
common behavior neighbors or attribute neighbors with u. In particular, a social node v is called
a behavior-sharing social neighbor of u if v and u share at least one common behavior neighbor.
For instance, in Figure 1, both u2 and u4 are behavior-sharing social neighbors of u1. We denote
the set of behavior-sharing social neighbors of u as Γu,BS . Similarly, we denote the set of attribute-
sharing social neighbors ofu as Γu,AS . Formally, we have Γu,BS={v |t (v ) = S & Γv,B ∩ Γu,B � ∅} and
Γu,AS={v |t (v ) = S & Γv,A ∩ Γu,A � ∅}. We note that our definitions of Γu,BS and Γu,AS also include
the social node u itself. These notations will be useful in describing our attack.

4 VOTE DISTRIBUTION ATTACK (VIAL)

4.1 Overview

Suppose we are given an SBA network G that also includes the social structures and behaviors
of the targeted users; our goal is to infer attributes for every targeted user. Specifically, for each
targeted user v , we compute the similarity between v and each attribute value (corresponding to
an attribute node inG), and then we predict thatv owns the attribute values that have the highest
similarity scores.

In a high-level abstraction, VIAL works in two phases.

—Phase I. VIAL iteratively distributes a fixed vote capacity from the targeted user v to the
rest of users in Phase I. The intuitions are that a user receives a high vote capacity if the
user and the targeted user are structurally similar in the SBA network (e.g., share common
friends and behaviors), and that the targeted user is more likely to have the attribute values
belonging to users with higher vote capacities. At the end of Phase I, we obtain a vote
capacity vector �sv , where �svu is the vote capacity of the social node u.

—Phase II. Intuitively, if a user with a certain vote capacity has more attribute values, then,
according to the information of this user alone, the likelihood of each of these attribute
values belonging to the targeted user decreases. Moreover, an attribute value should receive
more votes if more users with higher vote capacities have the attribute value. Therefore, in
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Fig. 2. Illustration of our three local rules.

Phase II, each social node votes for its attribute values via dividing its vote capacity among
them, and each attribute value sums the vote capacities that are divided to it by its social
neighbors. We treat the summed vote capacity of an attribute value as its similarity with v .
Finally, we predict v has the attribute values that receive the highest votes.

4.2 Phase I

In Phase I, VIAL iteratively distributes a fixed vote capacity from the targeted user v to the rest of

users. We denote by�s (i )
v the vote capacity vector in the ith iteration, where�s (i )

vu is the vote capacity
of node u in the ith iteration. Initially, v has a vote capacity |Vs | and all other social nodes have
vote capacities of 0. Formally, we have

�s (0)
vu =

{
|Vs | if u = v
0 otherwise

. (1)

In each iteration, VIAL applies three local rules. They are dividing, backtracking, and aggregating.
Intuitively, if a user u has more (hop-2) social neighbors, then each neighbor could receive less
vote capacity from u. Therefore, our dividing rule splits a social node u’s vote capacity to u’s
social neighbors and hop-2 social neighbors. The backtracking rule takes a portion of every social
node’s vote capacity and assigns them back to the targeted user v , which is based on the intuition
that social nodes that are closer to v in the SBA network are likely to be more similar to v and
should get more vote capacities. A user could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher vote capacities. Thus, for each user u, the
aggregating rule collects the vote capacities that are shared to u by its social neighbors and hop-2
social neighbors in the dividing step. Figure 2 illustrates the three local rules. Next, we discuss the
three local rules in detail.

Our aggregating rule to compute the new vote capacity �s (i )
vu for u:

�s (i )
vu =

⎧⎪⎨⎪⎩(1 − α ) (
∑

x ∈Γu,S
p (i )

v (x ,u) +
∑

x ∈Γu,BS
q (i )

v (x ,u) +
∑

x ∈Γu,AS
r (i )

v (x ,u)) if u � v
(1 − α ) (

∑
x ∈Γu,S

p (i )
v (x ,u) +

∑
x ∈Γu,BS

q (i )
v (x ,u) +

∑
x ∈Γu,AS

r (i )
v (x ,u)) + α |Vs | otherwise

.

(2)

Our dividing matrix:

Mux =

{
δux,S · wS

wT
· wux

du,S
+ δux,BS · wBS

wT
·wB (u,x ) + δux,AS · wAS

wT
·wA (u,x ) if x ∈ γu

0 otherwise,
(3)

where γu = Γu,S ∪ Γu,BS ∪ Γu,AS ; δux,Y = 1 if x ∈ Γu,Y , otherwise δux,Y = 0, Y = S,BS,AS .
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Dividing. A social node u could have social neighbors, behavior-sharing social neighbors, and
attribute-sharing social neighbors. To distinguish them, we use three weights, wS , wBS , and wAS ,
to represent the shares of them, respectively. For instance, the total vote capacity shared to social

neighbors ofu in the t th iteration is�s (i−1)
vu × wS

wS+wBS+wAS
. Then we further divide the vote capacity

among each type of neighbors according to their link weights. We define Iu,Y = 1 if the set of
neighbors Γu,Y is non-empty, otherwise Iu,Y = 0, where Y = S,BS,AS . The variables Iu,S , Iu,BS ,
and Iu,AS are used to consider the scenarios where u does not have some type(s) of neighbors, in
whichu’s vote capacity is divided among less than three types of social neighbors. For convenience,
we denote wT = wS Iu,S +wBS Iu,BS +wAS Iu,AS .

—Social neighbors. A social neighbor x ∈ Γu,S receives a higher vote capacity from u if their

link weight (e.g., tie strength) is higher. Therefore, we model the vote capacity p (i )
v (u,x ) that

is divided to x by u in the ith iteration as

p (i )
v (u,x ) = �s (i−1)

vu · wS

wT
· wux

du,S
, (4)

where du,S is the summation of weights of social links that are incident from u.
—Behavior-sharing social neighbors. A behavior-sharing social neighbor x ∈ Γu,BS receives a

higher vote capacity from u if they share more behavior neighbors with higher predictive-

ness. Thus, we model vote capacity q (i )
v (u,x ) that is divided to x by u in the ith iteration as

q (i )
v (u,x ) = �s (i−1)

vu · wBS

wT
·wB (u,x ), (5)

where wB (u,x ) =
∑

y∈Γu,B∩Γx,B

wuy

du,B
· wxy

dy,S
, representing the overall share of vote capac-

ity that u divides to x because of their common behavior neighbors. Specifically,
wuy

du,B

characterizes the fraction of vote capacity, u divides to the behavior neighbor y, and
wxy

dy,S

characterizes the fraction of vote capacity y divides to x . Large weights of wuy and wxy

indicate y is a predictive behavior of the attribute values of u and x , and having more such
common behavior neighbors make x share more vote capacity from u.

—Attribute-sharing social neighbors. An attribute-sharing social neighbor x ∈ Γu,AS receives
a higher vote capacity from u if they share more attribute neighbors with higher degree of

affinity. Thus, we model vote capacity r (i )
v (u,x ) that is divided to x by u in the ith iteration

as

r (i )
v (u,x ) = �s (i−1)

vu · wAS

wT
·wA (u,x ), (6)

where wA (u,x ) =
∑

y∈Γu,A∩Γx,A

wuy

du,A
· wxy

dy,S
, representing the overall share of vote capacity

that u divides to x because of their common attribute neighbors. Specifically,
wuy

du,A
charac-

terizes the fraction of vote capacity u divides to the attribute neighbor y and
wxy

dy,S
charac-

terizes the fraction of vote capacity y divides to x . Large weights ofwuy andwxy indicate y
is an attribute value with a high degree of affinity, and having more such common attribute
values makes x share more vote capacity from u.

We note that a social node x could be multiple types of social neighbors of u (e.g., x could be
social neighbor and behavior-sharing social neighbor of u), in which x receives multiple shares of
vote capacity from u and we sum them as x ’s final share of vote capacity.

Backtracking. For each social node u, the backtracking rule takes a portion α of u’s vote capac-

ity back to the targeted user v . Specifically, the vote capacity backtracked to v from u is α�s (i−1)
vu .
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ALGORITHM 1: Phase I of VIAL

Input: G = (V ,E,w, t ), M, v , ϵ , and α .

Output: �sv .

begin

//Initializing the vote capacity vector.

for u ∈ Vs do

if u = v then

�s
(0)
vu ←− |Vs |

else

�s
(0)
vu ←− 0

end

end

error ←− 1

while error > ϵ do

�s
(i )
v ←− α�ev + (1 − α )MT�s

(i−1)
v

error ←− |�s (i )
v −�s

(i−1)
v |/|Vs |

end

return �s
(i )
v

end

Considering backtracking, the vote capacity divided to the social neighbor x of u in the dividing

step is modified as (1 − α )p (i )
v (u,x ). Similarly, the vote capacities divided to a behavior-sharing

social neighbor and an attribute-sharing social neighbor x are modified as (1 − α )q (i )
v (u,x ) and

(1 − α )r (i )
v (u,x ), respectively. We call the parameter α backtracking strength. A larger backtrack-

ing strength enforces more vote capacity to be distributed among the social nodes that are closer
to v in the SBA network. α = 0 means no backtracking. We will show that, via both theoretical
and empirical evaluations, VIAL achieves better inference accuracy when using backtracking.

We can verify that
∑

x ∈Γu,S

wux

du,S
= 1,
∑

x ∈Γu,BS
wB (u,x ) = 1, and

∑
x ∈Γu,AS

wA (u,x ) = 1 for every

user u in the dividing step. In other words, every user divides all its vote capacity to its neighbors
(including the user itself if the user has hop-2 social neighbors). Therefore, the total vote capacity
keeps unchanged in every iteration. Thus, the total vote capacity that is backtracked to the targeted
user is α |Vs |.

Aggregating. The aggregating rule computes a new vote capacity �s (i )
vu for u by aggregating the

vote capacities that are divided tou by its neighbors in the ith iteration. For the targeted userv , we
also collect the vote capacities that are backtracked from all social nodes. Formally, our aggregating
rule is represented as Equation (2).

Matrix representation. We derive Phase I of our attack using matrix terminologies, which makes
it easier to iteratively compute the vote capacities. Towards this end, we define a dividing matrix

M ∈ R |Vs |× |Vs | , which is formally represented in Equation (3). The dividing matrix encodes the
dividing rule. Specifically, u divides Mux fraction of its vote capacity to the neighbor x in the
dividing step. Note that M includes the dividing rule for all three types of social neighbors.

With the dividing matrix M, we can represent the backtracking and aggregating rules in the ith
iteration as follows:

�s (i )
v = α�ev + (1 − α )MT�s (i−1)

v , (7)

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 3. Publication date: January 2018.



3:10 N. Z. Gong and B. Liu

where �ev is a vector with the vth entry equals |Vs | and all other entries equal 0, and M
T is the

transpose of M.
Given an initial vote capacity vector specified in Equation (1), we iteratively apply Equation (7)

until the difference between the vectors in two consecutive iterations is smaller than a predefined
threshold. Algorithm 1 shows Phase I of our attack.

4.3 Phase II

In Phase I, we obtained a vote capacity for each user. On one hand, the targeted user could be more
likely to share attribute values with the users with higher vote capacities. On the other hand, if a
user has more attribute values, then the likelihood of each of these attribute values belonging to
the targeted user could be smaller. For instance, if a user with a high vote capacity once studied
in more universities for undergraduate education, then according to this user’s information alone,
the likelihood of the targeted user studying in each of those universities could be smaller.

Moreover, among a user’s attribute values, an attribute value that has a higher degree of affinity
(represented by the weight of the corresponding attribute link) with the user could be more likely
to be an attribute value of the targeted user. For instance, suppose a user once lived in two cities,
one of which is the user’s hometown while the other is a city where the user once travelled; the
user has a high vote capacity because he/she is structurally close (e.g., he/she shares many common
friends with the targeted user) to the targeted user; then the targeted user is more likely to be from
the hometown of the user than from the city where the user once travelled.

Therefore, to capture these observations, we divide the vote capacity of each user to its attribute
values in proportion to the weights of the corresponding attribute links; and each attribute value
sums the vote capacities that are divided to it by the users having the attribute value. Intuitively, an
attribute value receives more votes if more users with higher vote capacities link to the attribute
value via links with higher weights. Formally, we have

�tva =
∑

u ∈Γa,S

�svu ·
wau

du,A
, (8)

where �tva is the final votes of the attribute value a, Γa,S is the set of users who have the attribute
value a, du,A is the sum of weights of attribute links that are incident from u.

We treat the summed votes of an attribute value as its similarity with v . Finally, we predict v
has the attribute values that receive the highest votes.

4.4 Confidence Estimation

For a targeted user, a confidence estimator takes the final votes for all attribute values as an input
and produces a confidence score. A higher confidence score means that attribute inference for the
targeted user is more trustworthy. We design a confidence estimator based on clustering tech-
niques. A targeted user could have multiple attribute values for a single attribute, and our attack
could produce close votes for these attribute values. Therefore, we design a confidence estimator
called clusterness for our attack. Specifically, we first use a clustering algorithm (e.g., k-means [33])
to group the votes that our attack produces for all candidate attribute values into two clusters. Then
we compute the average vote in each cluster, and the clusterness is the difference between the two
average votes. The intuition of our clusterness is that if our attack successfully infers the targeted
user’s attribute values, there could be a cluster of attribute values whose votes are significantly
higher than other attribute values’.

Suppose the attacker chooses a confidence threshold and only predicts attributes for targeted
users whose confidence scores are higher than the threshold. Via setting a larger confidence thresh-
old, the attacker will attack less targeted users but could achieve a higher success rate. In other
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words, an attacker can balance between the success rates and the number of targeted users to
attack via confidence estimation.

5 THEORETICAL ANALYSIS

We analyze the convergence of VIAL and derive the analytical forms of vote capacity vectors,
discuss the importance of the backtracking rule, and analyze the complexity of VIAL.

5.1 Convergence and Analytical Solutions

We first show that for any backtracking strength α ∈ (0, 1], the vote capacity vectors converge.

Theorem 5.1. For any backtracking strength α ∈ (0, 1], the vote capacity vectors�s (0)
v ,�s (1)

v ,�s (2)
v , · · ·

converge, and the converged vote capacity vector is α (I − (1 − α )MT )−1�ev . Formally, we have

�sv = lim
i→∞

�s (i )
v = α (I − (1 − α )MT )−1�ev , (9)

where I is an identity matrix and (I − (1 − α )MT )−1 is the inverse of (I − (1 − α )MT ).

Proof. See Appendix A. �

Next, we analyze the convergence of VIAL and the analytical form of the vote capacity vector
when the backtracking strength α = 0.

Theorem 5.2. When α = 0 and the SBA network is connected, the vote capacity vectors �s (0)
v , �s (1)

v ,

�s (2)
v , · · · converge, and the converged vote capacity vector is proportional to the unique stationary

distribution of the Markov chain whose transition matrix is M. Mathematically, the converged vote

capacity vector �sv can be represented as

�sv = |Vs |�π , (10)

where �π is the unique stationary distribution of the Markov chain whose transition matrix is M.

Proof. See Appendix B. �

With Theorem 5.2, we have the following corollary, which states that the vote capacity of a user
is proportional to its weighted degree for certain assignments of the shares of social neighbors and
hop-2 social neighbors in the dividing step.

Corollary 5.1. When α = 0, the SBA network is connected, and for each useru, the shares of social

neighbors, behavior-sharing social neighbors, and attribute-sharing social neighbors in the dividing

step are wS = τ · du,S , wBS = τ · du,B , and wAS = τ · du,A, respectively, then we have

�svu = |Vs |
du

D
, (11)

where τ is any positive number, du is the weights of all links of u, and D is the twice of the total

weights of all links in the SBA network, i.e., D =
∑

u du .

Proof. See Appendix C. �

5.2 Importance of Backtracking

Theorem 5.2 implies that when there is no backtracking, the converged vote capacity vector is
independent with the targeted users. In other words, VIAL with no backtracking predicts the same
attribute values for all targeted users. This explains why VIAL with no backtracking achieves
suboptimal performance. We will further empirically evaluate the impact of backtracking strength
in our experiments. We found that VIAL’s performance significantly degrades when there is no
backtracking.
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5.3 Time Complexity

The major cost of VIAL is from Phase I, which includes computing M and iteratively computing
the vote capacity vector. M only needs to be computed once and is applied to all targeted users. M

is a sparse matrix withO (m) non-zero entries, wherem is the number of links in the SBA network.
To compute M, for every social node, we need to go through its social neighbors and hop-2 social
neighbors; for a hop-2 social neighbor, we need to go through the common attribute/behavior
neighbors between the social node and the hop-2 social neighbor. Therefore, the time complexity
of computing M is O (m).

Using sparse matrix representation of M, the time complexity of each iteration (i.e., applying
Equation (7) in computing the vote capacity vector) is O (m). Therefore, the time complexity of
computing the vote capacity vector for one targeted user is O (d ·m), where d is the number of
iterations. Thus, the overall time complexity of VIAL is O (d ·m) for one targeted user.

6 DATA COLLECTION

We collected a dataset from Google+ and Google Play to evaluate our VIAL and previous attacks.
Specifically, we collected social structures and user attributes from Google+ and user review be-
haviors from Google Play. Google assigns each user a 21-digit universal ID, which is used in both
Google+ and Google Play. We first collected a social network with user attributes from Google+ via
iteratively crawling users’ friends. Then we crawled review data of users in the Google+ dataset.
All the information that we collected is publicly available. To evaluate various attribute inference
attacks, we will randomly sample some users with publicly available attributes, treat them as tar-
geted users, and remove their attributes as ground truth.

6.1 Google+ Dataset

Each user in Google+ has an outgoing friend list (i.e., “in your circles”), an incoming friend list
(i.e., “have you in circles”), and a profile. Shortly after Google+ was launched in late June 2011,
Gong et al. [23, 24] began to crawl daily snapshots of public Google+ social network structure
and user profiles (e.g., major, employer, and cities lived). Their dataset includes 79 snapshots of
Google+ collected from July 6 to October 11, 2011. Each snapshot was a large Weakly Connected
Component of Google+ social network at the time of crawling.

Gong et al. made a part of this dynamic Google+ dataset publicly available. We obtained one
snapshot from Gong et al. To better approximate friendships between users, we construct an undi-
rected social network from the crawled Google+ dataset via keeping an undirected link between
a user u and v if u is in v’s both incoming friend list and outgoing friend list. After preprocessing,
our Google+ dataset consists of 1,111,905 users and 5,328,308 undirected social links.

6.2 Crawling Google Play

The Google Play market [25] is a centralized platform where developers can publish their items

while users can download and consume them. There are seven categories of items in Google Play.
They are apps, tv, movies, music, books, newsstand, and devices.

Google Play also provides two review mechanisms for users to provide feedback on an item.
They are the liking mechanism and the rating mechanism. In the liking mechanism, a user simply
clicks a like button to express his preference about an item. In the rating mechanism, a user is
able to express fine-grained preferences. Specifically, a user gives a rating score which is in the
set {1,2,3,4,5} as well as a detailed comment to support his/her rating. A score of 1 represents low
preference and a score of 5 represents high preference. We say a user reviewed an item if the user
rated or liked the item.
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Fig. 3. (a) The probability distribution of the number of items that are reviewed by a user. (b) The probability

distribution of the number of users that reviewed an item. (c) The probability distribution of the number of

users that have a certain attribute value.

Users’ reviews are publicly available in Google Play. Specifically, after a user u logs into Google
Play, u can view the list of items reviewed by any user v once u can obtain v’s Google ID.3 We
crawled the list of items reviewed by each user in the Google+ dataset. In total, we collected 260,245
items and 3,954,822 reviews.

6.3 Basic Measurement

6.3.1 User Reviews. We find that 33% of users have reviewed at least one item. Figure 3(a) fur-
ther shows the probability distribution of the number of items that were reviewed by these users.
We observe that this distribution is best fit as a lognormal distribution, i.e., a large fraction of users
reviewed a small number of items and there are a tiny fraction of users that reviewed a large num-
ber of items. For instance, 86% of users reviewed less than 5 items and there are still 1% of users
that reviewed at least 50 items. Our observations show that attribute inference using review data
alone is limited to a small number of users. However, we will show—in our experiments—that once
we combine users’ review data, VIAL achieves better attack success rates. Moreover, we will show
that as users review more items, our attack can achieve better attack success rates.

Figure 3(b) demonstrates the probability distribution of the number of users that reviewed an
item. We find that this distribution is best fit as a power-law distribution, i.e., a large fraction of
items were reviewed by a small number of users and there are a small fraction of items that were
reviewed by a large number of users. Since items with too few reviews might not be informative
to distinguish users with different attribute values, we use items that were reviewed by at least
five users. After preprocessing, we have 48,706 items and 3,635,231 reviews.

6.3.2 User Attributes. We consider three attributes, i.e., major, employer, and cities lived. We
note that, although we focus on these attributes that are available to us at a large scale, our attack
is also applicable to infer other attributes such as sexual orientation, political views, and religious
views. Moreover, some targeted users might not view inferring these attributes as a privacy attack,
but an attacker can leverage these attributes to further link users across online social networks [2,
5, 19, 20] or even link them with offline records to perform more serious security and privacy
attacks [45, 56].

We take the strings input by a user in its Google+ profile as attribute values. Figure 3(c) shows
the probability distribution of the number of users that have a given attribute value. Again, we
observe a power-law distribution, i.e., most attribute values are owned by a small number of users,
and there are some attribute values that are owned by a large number of users. Users could fill
in their profiles freely in Google+, which could be one reason that we observe many infrequent
attribute values. Specifically, different users might have different names for the same attribute

3For instance, https://play.google.com/store/people/details?id=109649490051533913252 shows the list of items reviewed by

the user with a Google ID 109649490051533913252.
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Table 1. Sixty-Two Distinct Majors That Are Classified into Five Categories

Category Examples #majors % of users
Arts, Humanities, Social Sciences Music, History, Sociology 13 1.3%

Information Technology CS, ECE, EE 14 3.6%
Business Marketing, Accounting, MBA 8 1.2%

Science, Math, and Engineering Biology, Mathematics 17 1.8%
Mechanical Engineering

Public and Social Services Law, Nursing, Public Relations 10 0.5%

Table 2. Seventy-Eight Distinct Employers That Are Classified into Six Categories

Category Examples #employers % of users
Public and Social

Services
U. S. Army, U.S. Navy, UPS 5 0.1%

Universities UC Berkeley, Harvard University 20 0.8%
Princeton University

Trades and Personal
Services

Best Buy, Starbucks, Subway 10 0.2%

Science, Math, and
Engineering

Boeing, Ford, General Motors 3 0.1%

Information
Technology

Google, IBM, Microsoft 29 1.5%

Finance Bank of America, Chase, Goldman
Sachs

11 0.4%

value. For instance, the major of computer science could also be abbreviated as CS by some users.
Indeed, we find that 20,861 users have computer science as their major and 556 users have CS
as their major in our dataset. Moreover, small typos (e.g., one letter is incorrect) in the free-form
inputs make the same attribute value be treated as a different one.

Major. We consider the top 100 majors that are claimed by the most users. We manually merge
the majors that actually refer to the same one, e.g., computer science and CS, Btech and biotech-
nology. Moreover, some majors are close to each other in the sense that users with those majors
might have similar characteristics, behaviors, and interests, e.g., computer science vs. computer
engineering. Since it is unnecessary to distinguish such majors in some applications such as in-
ferring hidden social relationships between users and targeted advertisements, we further classify
majors into categories. In particular, we first get five major categories constructed by the organi-
zation Bigfuture [8], which is widely used by students to guide the selection of majors and careers.
Then we manually analyze the category of each major that we consider. Table 1 shows the five
categories of majors, the number of distinct majors in each category, and the fraction of users in
our dataset that have at least one major in a given category. We note that the fractions of users
are small because we consider a small number of top majors and only around 30% of users in our
dataset have at least one publicly available attribute value.

Employer. Similar to major, we select the top 100 employers that are claimed by the most users,
manually merge the employers that refer to the same one, and classify them into six categories.
Table 2 shows the six categories, the number of distinct employers in each category, and the
fraction of users that have at least one employer in a given category.
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Fig. 4. Fraction of users that have lived in a given country.

Cities and countries lived. Again, we select the top 100 cities in which most users in the Google+
dataset claimed they have lived in. We first manually merge the cities that actually refer to the
same one. Then, we map cities to countries. After preprocessing, we have 70 distinct cities and 30
distinct countries including the U.S., India, and China. Figure 4 shows the fraction of users that
have lived in a given country.

Summary. We consider 210 distinct attribute values, including 62 majors, 78 employers, and
70 cities. Moreover, we classify these attribute values into 5 categories of majors, 6 categories of
employers, and 30 countries. We acknowledge that our Google+ dataset might not be a represen-
tative sample of the recent entire Google+ social network, and thus the inference attack success
rates obtained in our experiments might not represent those of the entire Google+ social network.

6.4 Constructing SBA Networks

We take each user in the Google+ dataset as a social node and links between them as social links.
For each item in our Google Play dataset, we add a corresponding behavior node. If a user reviewed
an item, we create a link between the corresponding social node and the corresponding behavior
node. That a user reviewed an item means that the user once used the item. Using similar items
could indicate similar interests, user characteristics, and user attributes. When predicting attribute
values, we further add additional attribute nodes to represent attribute values, and we create a link
between a social node and an attribute node if the user has the attribute value. When predicting
attribute categories (i.e., category of majors, category of employers, and country), each additional
attribute node represents an attribute category, and we create a link between a social node and
an attribute node if the user has some attribute value that belongs to the corresponding attribute
category. Table 3 shows the basic statistics of our constructed SBAs for predicting attribute values
and attribute categories.

In this article, we set the weights of all links in the SBAs to be 1. Therefore, our attacking result
represents a lower bound on what an attacker can achieve in practice. An attacker could leverage
machine learning techniques (we discuss one in Section 8) to learn link weights to further improve
success rates.

7 EXPERIMENTS

7.1 Experimental Setup

We describe evaluation metrics, training and testing, as well as parameter settings.
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Table 3. Basic Statistics of Our SBAs for Predicting

Attribute Values and Attribute Categories

#social nodes #behavior nodes

#attri. nodes

attri. val. attri. cat.

1,111,905 48,706 210 41

#social links #behavior links
#attri. links

attri. val. attri. cat.

5,328,308 3,635,231 269,997 238,140

Evaluation metrics. All attacks we evaluate essentially assign a score for each candidate attribute
value. Given a targeted user v , we predict top-K candidate attribute values that have the highest
scores for each attribute including major, employer, and cities lived. We use Precision, Recall, and F-
score to evaluate the top-K predictions. In particular, Precision is the fraction of predicted attribute
values that belong to v . Recall is the fraction of v’s attribute values that are among the predicted
K attribute values. We address score ties in the manner described by McSherry and Najork [44].
Precision characterizes how accurate an attacker’s inferences are while Recall characterizes how
many user attributes are corrected inferred by an attacker. In particular, Precision for top-1 predic-
tion is the fraction of users that the attacker can correctly infer at least one attribute value. F-score
is the harmonic mean of Precision and Recall, i.e., we have

F-score =
2 · Precision · Recall

Precision + Recall
.

Moreover, we average the three metrics over all targeted users. We compute these metrics similarly
to evaluate attribute-category inference. For convenience, we will also use P, R, and F to represent
Precision, Recall, and F-Score, respectively.

We also define performance gain and relative performance gain of one attack A over another
attack B to compare their relative performances. We take Precision as an example to show our
definitions of performance gain and relative performance gain as follows:

Performance gain: ΔP = PrecisionA − PrecisionB.

Relative performance gain: ΔP% =
PrecisionA − PrecisionB

PrecisionB
× 100%.

Training and testing. In the experiments of inferring attribute values, for each attribute value,
we sample five users uniformly at random from the users that have the attribute value and have
reviewed at least five items, and we treat them as test (i.e., targeted) users. In total, we have around
1,050 test users. In the experiments of inferring attribute categories, we transform the attribute
values of the test users to the corresponding attribute categories. For test users, we remove their
attribute links and use them as ground truth. We repeat the experiments 10 times and average the
evaluation metrics over the 10 trials.

Paramater settings. In the dividing step, we set equal shares for social neighbors, behavior-
sharing social neighbors, and attribute-sharing social neighbors, i.e., wS = wBS = wAS =

1
3 . The

number of iterations to compute the vote capacity vector is d = 	log |Vs |
= 20, after which the
vote capacity vector converges. Unless otherwise stated, we set the backtracking strength α = 0.1.
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7.2 Compared Attacks

We compare VIAL with friend-based attacks, behavior-based attacks, and attacks that use both
social structures and behaviors. These attacks essentially assign a score for each candidate attribute
value or attribute category, and return the K attribute values or attribute categories that have the
highest scores. Suppose v is a test user and a is an attribute value or an attribute category, and we
denote by S (v,a) the score assigned to a for the test user v .

Random. This baseline method computes the fraction of users in the training dataset that have
a certain attribute value or attribute category a, and it treats such fraction as the score S (v,a) for
all test users.

Friend-based attacks. We compare with three friend-based attacks. They are CN-SAN, AA-SAN,
and RWwR-SAN [23]. These attacks were shown to outperform previous attacks such as LINK [23,
64].

—CN-SAN. This attack calculates the number of common social neighbors between v and a
as the score S (v,a).

—AA-SAN. This attack weights the importance of each common social neighbor between v
and a proportional to the inverse of the log of its number of neighbors. Formally, S (v,a) =∑

u ∈Γv,S∩Γa,S

1
log |Γu | .

—RWwR-SAN. RWwR-SAN augments the social network with additional attribute nodes.
Then it performs a random walk that is initialized from the test user v on the augmented
graph. The stationary probability of the attribute node that corresponds to a is treated as
the score S (v,a).

Behavior-based attacks. We also evaluate three behavior-based attacks.

—Logistic regression (LG-B-I) [60]. LG-B-I treats each attribute value or attribute category
as a class and learns a multi-class logistic regression classifier with the training dataset.
Specifically, LG-B-I extracts a feature vector whose length is the number of items for each
user that has review data, and a feature has a value of the rating score that the user gave
to the corresponding item. Google Play allows users to rate or like an item, and we treat a
liking as a rating score of 5. For a test user, the learned logistic regression classifier returns
a posterior probability distribution over the possible attribute values/categories, which are
used as the scores S (v,a). Weinsberg et al. [60] showed that logistic regression classifier
outperforms other classifiers including SVM [14] and Naive Bayes [42].

—Logistic regression with binary features (LG-B-II) [35]. The difference between LG-B-II and
LG-B-I is that LG-B-II extracts binary feature vectors for users. Specifically, a feature has a
value of 1 if the user has rated or liked the corresponding item.

—VIAL-B. This is a variant of VIAL that only uses behavior data. Specifically, we remove social
links from the SBA network and perform our VIAL using the remaining behavior links and
attribute links.

Attacks combining social structures and behaviors. Intuitively, we can combine social structures
and behaviors via concatenating social structure features with behavior features. We compare with
two such attacks.

—Logistic regression (LG-I). LG-I extracts a binary feature vector whose length is the number
of users from social structures for each user, and a feature has a value of 1 if the user is a
friend of the person that corresponds to the feature. Then LG-I concatenates this feature
vector with the one used in LG-B-I and learns multi-class logistic regression classifiers.
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Fig. 5. Precision, Recall, and F-Score for inferring majors. Although these attacks do not have temporal

orderings, we connect them via curves in the figures to better contrast them.

Fig. 6. Precision, Recall, and F-Score for inferring major categories.

Fig. 7. Precision, Recall, and F-Score for inferring employers.

—Logistic regression with binary features (LG-II). LG-II concatenates the binary social structure
feature vector with the binary behavior feature vector used by LG-B-II.

We use the popular package LIBLINEAR [17, 39] to learn logistic regression classifiers.

7.3 Results

Figures 5–10 demonstrate the Precision, Recall, and F-score for top-K inference of majors, major
categories, employers, employer categories, cities, and countries, where K = 1, 2, 3. We average
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Fig. 8. Precision, Recall, and F-Score for inferring employer categories.

Fig. 9. Precision, Recall, and F-Score for inferring cities.

Fig. 10. Precision, Recall, and F-Score for inferring countries.

the results over 10 trials. We find that standard deviations of the metrics are very small, and thus
we do not show them for simplicity. Next, we describe a few key observations we have made from
these results.

Comparing friend-based attacks. We find that RWwR-SAN performs the best among the friend-
based attacks. Our observation is consistent with the previous work [23]. To better illustrate the
difference between the friend-based attacks, we show the performance gains and relative per-
formance gains of RWwR-SAN over other friend-based attacks in Table 4. Please refer to Sec-
tion 7.1 for formal definitions of (relative) performance gains. The (relative) performance gains are
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Table 4. Performance Gains and Relative Performance Gains of

RWwR-SAN over Other Friend-based Attacks, Where K = 1

(a) Inferring attributes

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

CN-SAN 0.07 24% 0.04 24% 0.05 24%

AA-SAN 0.08 26% 0.04 26% 0.05 26%

(b) Inferring attribute categories

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

CN-SAN 0.10 19% 0.06 19% 0.07 18%

AA-SAN 0.09 18% 0.06 18% 0.07 17%

We averaged the gains over all attributes or attribute categories. We find

that RWwR-SAN is the best friend-based attack.

Table 5. Performance Gains and Relative Performance Gains of

VIAL-B over Other Behavior-based Attacks, Where K = 1

(a) Inferring attributes

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

LG-B-I 0.06 42% 0.04 47% 0.05 45%

LG-B-II 0.07 47% 0.05 52% 0.06 50%

(b) Inferring attribute categories

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

LG-B-I 0.03 7% 0.03 8% 0.03 8%

LG-B-II 0.04 8% 0.03 9% 0.04 9%

We averaged the gains over all attributes or attribute categories. We find

that VIAL-B is the best behavior-based attack.

averaged over all attributes (i.e., major, employer, and city) or attribute categories (i.e., major cat-
egory, employer category, and country). The reason why RWwR-SAN outperforms other friend-
based attacks is that RWwR-SAN performs a random walk among the augmented graph, which
better leverages the graph structure, while other attacks simply count the number of common
neighbors or weighted common neighbors.

Comparing behavior-based attacks. We find that VIAL-B performs the best among the behavior-
based attacks. Table 5 shows the average performance gains and relative performance gains of
VIAL-B over other behavior-based attacks. Our results indicate that our graph-based attack is a
better way to leverage behavior structures, compared to LG-B-I and LG-B-II, which flatten the
behavior structures into feature vectors. Moreover, LG-B-I and LG-B-II achieve very close perfor-
mances, which indicates that the rating scores carry little information about user attributes.

Comparing attacks combining social structures and behaviors. We find that VIAL performs the
best among the attacks combining social structures and behaviors. Table 6 shows the average
performance gains and relative performance gains of VIAL over other attacks. Our results imply
that, compared to flattening the structures into feature vectors, our graph-based attack can better
integrate social structures and user behaviors.

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 3. Publication date: January 2018.



Attribute Inference Attacks in Online Social Networks 3:21

Table 6. Performance Gains and Relative Performance Gains

of VIAL over Other Attacks Combining Social Structures and

Behaviors, Where K = 1

(a) Inferring attributes

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

LG-I 0.17 61% 0.10 65% 0.13 63%

LG-II 0.18 65% 0.11 69% 0.13 67%

(b) Inferring attribute categories

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

LG-I 0.15 26% 0.09 26% 0.11 26%

LG-II 0.15 27% 0.09 28% 0.11 27%

We averaged the gains over all attributes or attribute categories. We

find that VIAL substantially outperforms other attacks.

Table 7. Performance Gains and Relative Performance Gains of VIAL

over Random, RWwR-SAN (The Best Friend-Based Attack),

and VIAL-B (The Best Behavior-Based Attack), Where K = 1

(a) Inferring attributes

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

Random 0.36 526% 0.22 535% 0.27 534%

RWwR-SAN 0.07 20% 0.05 23% 0.06 22%

VIAL-B 0.22 102% 0.13 99% 0.16 100%

(b) Inferring attribute categories

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%

Random 0.49 306% 0.33 309% 0.39 308%

RWwR-SAN 0.09 14% 0.06 14% 0.07 15%

VIAL-B 0.21 48% 0.12 48% 0.15 48%

We averaged the gains over all attributes or attribute categories.

Comparing VIAL with the best friend-based attack and the best behavior-based attack. Table 7
shows the average performance gains and relative performance gains of VIAL over Random, the
best friend-based attack, and the best behavior-based attack. We find that VIAL significantly out-
performs these attacks, indicating the importance of combining social structures and behaviors to
perform attribute inference. This implies that, when an attacker wants to attack user privacy, the
attacker can successfully attack substantially more users using VIAL.

Comparing different attributes. We observe that inferring attribute categories is easier than in-

ferring attribute values. For instance, VIAL achieves 0.23 higher F-score for inferring top major
category than inferring top major. This is because the number of candidate attribute categories is
much smaller than the number of attribute values. Moreover, we find that cities are easier to infer

than employers, which are easier to infer than majors. For instance, VIAL achieves 0.82 Precision
for inferring top country, which is 0.18 higher than inferring top employer category, which in
turn achieves 0.09 higher Precision than inferring top major category. One reason might be that
some apps are only popular in certain cities [61] and users in different countries use different apps
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Fig. 11. (a) Impact of the backtracking strength on the Precision of VIAL for inferring cities. We observe

that backtracking substantially improves VIAL’s performance. (b) Impact of the number of reviewed items

on the Precision of our attack VIAL for inferring cities. We observe that, when users share more behaviors,

our attack is able to more accurately predict their attributes.

customized to the cultures, e.g., apps that are popular in two countries might use different lan-
guages. Such localized apps make it easier to distinguish users from different cities or countries.

Impact of backtracking strength. Figure 11(a) shows the impact of backtracking strength on the
Precision of VIAL for inferring cities. According to Theorem 5.1, VIAL with α = 1 reduces to ran-
dom guessing, and thus we do not show the corresponding result in the figure. α = 0 corresponds
to the case in which VIAL does not use backtracking. We observe that not using backtracking
substantially decreases the performance of VIAL. The reason might be that 1) α = 0 makes VIAL
predict the same attribute values for all test users, according to Theorem 5.2, and 2) a user’ at-
tributes are close to the user in the SBA network and backtracking makes it more likely for votes
to be distributed among these attribute nodes. Moreover, we find that inference performances are
stable across different backtracking strengths once they are larger than 0. We observe similar re-
sults for inferring other attributes.

Impact of the number of reviewed items. Figure 11(b) shows the Precision as a function of the
number of reviewed items for inferring cities lived. We average Precisions for test users whose
number of reviewed items falls under a certain interval (i.e., [5,20), [20,35), [35,50), or ≥50). We
observe that our attack can more accurately infer attributes for users who share more digital be-
haviors (i.e., reviewed items in our case).

Confidence estimation. Figure 12 shows the trade-off between the Precision and the fraction of
users that are attacked via our confidence estimator. We observe that an attacker can increase the
Precision (K = 1) of inferring cities from 0.57 to over 0.92 if the attacker attacks half of the test
users that are selected via confidence estimation. We also tried the confidence estimator called
gap statistic [48], in which the confidence score for a targeted user is the difference between the
score of the highest ranked attribute value and the score of the second highest ranked one. Our
confidence estimator slightly outperforms gap statistic because a test user could have multiple
attribute values and our attack could produce close scores for them.

8 DISCUSSION

Difference with conventional Random Walk with Restart (RWwR) [58]: Phase I of VIAL essentially
iteratively computes the vote capacity vector according to Equation 7. Therefore, Phase 1 of VIAL
can be viewed as performing a customized RWwR on the SBA network, where the matrix M

T and
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Fig. 12. Confidence estimation: trade-off between the Precision of our attack and the fraction of test users

that are attacked. We observe that an attacker can substantially improve the attack success rates when

attacking less users.

α are the transition matrix and restart probability of the random walk, respectively. The transition
matrix is significantly different from that of the conventional RWwR on an SBA network. Specif-
ically, if we perform a conventional RWwR on an SBA network, the particle in the random walk
can stay on any node and move to a node’s neighbors or jump back to the starting node in each
time step. In our customized RWwR on the SBA network, the particle in the random walk only
stays on users (not on behavior nodes nor attribute nodes). Suppose the particle currently stays on
a user u. In the next time step, the particle can move to (1) the starting user (i.e., the targeted user)
with the restart probability, (2) u’s social friends, or (3) other users who share common behaviors
or attributes with u.

Learning edge weights. This article focuses on propagating vote capacity among the SBA net-
work with given link weights, and our method VIAL is applicable to any link weights. However, it
is an interesting future work to learn the link weights, which could further improve the attacker’s
success rates. In the following, we discuss one possible approach to learn link weights. Since
Phase 1 of VIAL can be viewed as a customized RWwR, the attacker could adapt supervised

random walk [3] to learn the link weights. Specifically, the attacker already has a set of users with
publicly available attributes and the attacker can use them as a training dataset to learn the link
weights; the attacker removes these attributes from the SBA network as ground truth, and the
link weights are learnt such that VIAL can predict attributes for these users the most accurately.

Directed social networks. In this article, we consider that the social network is undirected.
However, directionality of edges may be helpful for attribute inference. Moreover, directed social
network and undirected social network may have significantly different structural properties, e.g.,
their mixing times are qualitatively different [47]. It is an interesting future work to generalize
our approach to directed social networks.

Limitations. We acknowledge two limitations of our work. First, we only evaluated our attacks
using one dataset. To evaluate our attacks, we need datasets that include (1) user attributes, (2)
social graph structure, and (3) user behaviors. To the best of our knowledge, there are no publicly

ACM Transactions on Privacy and Security, Vol. 21, No. 1, Article 3. Publication date: January 2018.



3:24 N. Z. Gong and B. Liu

available datasets that satisfy our experimental setup. However, it is an interesting future work to
collect other datasets to demonstrate the generalizability of our attacks. Second, we didn’t demon-
strate the scalability of our attacks. Theoretically, the time complexity of our attack isO (d ·m · nt ),
where d is the number of iterations needed to compute the vote capacity vector, m is the number
of links in the SBA network, and nt is the number of targeted users. d depends on the structure
of the SBA network. It is an interesting future work to study the scalability of our attacks with
respect to different SBA networks. Towards this goal, we need to design a model to synthesize
SBA networks with different sizes and structures. Existing network generators (e.g., preferential
attachment model [4] and SAN model [24]) cannot generate SBA networks. For instance, the pref-
erential attachment model only generates social graphs, while the SAN model generates social
graphs with node attributes.

9 RELATED WORK

Attribute inference and link inference are two fundamental privacy attacks to social network users.
In an attribute inference attack, an attacker aims to infer a target user’s missing attributes using
publicly available data on social networks. In a link inference attack [23, 38], an attacker aims to
infer missing links between users using data publicly available on social networks. Gong et al. [23]
proposed a method to jointly perform attribute inference and link inference attacks. Moreover,
they demonstrated that attribute inference attacks can be leveraged to improve link inference. In
this article, we focus on attribute inference attacks using both social structure and user behavior
information.

Friend-based attribute inference. He et al. [27] transformed attribute inference to Bayesian infer-
ence on a Bayesian network that is constructed using the social links between users. They eval-
uated their method using a LiveJournal social network dataset with synthesized user attributes.
Moreover, it is well known in the machine learning community that Bayesian inference is not scal-
able. Lindamood et al. [40] modified Naive Bayes classifier to incorporate social links and other
attributes of users to infer some attribute. For instance, to infer a user’s major, their method used
the user’s other attributes such as employer and cities lived, the user’s social friends and their
attributes. However, their approach is not applicable to users that share no attributes at all.

Zheleva and Getoor [64] studied various approaches to consider both social links and groups that
users joined to perform attribute inference. They found that, with only social links, the approach
LINK achieves the best performance. LINK represents each user as a binary feature vector, and
a feature has a value of 1 if the user is a friend of the person that corresponds to the feature.
Then LINK learns classifiers for attribute inference using these feature vectors. Gong et al. [23]
transformed attribute inference to a link prediction problem. Moreover, they showed that their
approaches CN-SAN, AA-SAN, and RWwR-SAN outperform LINK.

Mislove et al. [46] proposed to identify a local community in the social network by taking some
seed users that share the same attribute value, and then they predicted all users in the local com-
munity to have the shared attribute value. Their approach is not able to infer attributes for users
that are not in any local communities. Moreover, this approach is data dependent since detected
communities might not correlate with the attribute value. For instance, Trauda et al. [59] found
that communities in a MIT male network are correlated with residence but a female network does
not have such property. Dong et al. [16] explored the social structures for demographic inference
and a factor graph model was proposed to capture the interactions between demographic infor-
mation and social structures. Chen et al. [12] explored how network characteristics impacted user
attribute inference. Chakrabarti et al. [11] proposed a probabilistic method to model relationships
between multiple user attributes and their social relationships.
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Thomas et al. [57] studied the inference of attributes such as gender, political views, and religious
views. They used multi-label classification methods and leveraged features from users’ friends and
wall posts. Moreover, they proposed the concept of multi-party privacy to defend against attribute
inference. Kim and Leskovec [34] proposed a multiplicative attribute graphs (MAG) model to study
the interactions between the network structure and the node attributes.

Behavior-based attribute inference. Weinsberg et al. [60] investigated the inference of gender
using the rating scores that users gave to different movies. In particular, they constructed a feature
vector for each user; the ith entry of the feature vector is the rating score that the user gave to
the ith movie if the user reviewed the ith movie, otherwise the ith entry is 0. They compared a
few classifiers including logistic regression (LG) [31], SVM [14], and Naive Bayes [42], and they
found that LG outperforms the other approaches. Bhagat et al. [7] studied attribute inference in
an active learning framework. Specifically, they investigated which movies we should ask users to
review in order to improve the inference accuracy the most. However, this approach might not be
applicable in real-world scenarios because users might not be interested in reviewing the selected
movies.

Chaabane et al. [10] used the information about music users’ likes to infer attributes. They aug-
mented the music with the corresponding Wikipedia pages and then used topic modeling tech-
niques to identify the latent similarities between music. A user is predicted to share attributes
with those that like similar music with the user. Kosinski et al. [35] tried to infer various attributes
based on the list of pages that users liked on Facebook. Similar to the work performed by Weinsberg
et al. [60], they constructed a feature vector from the Facebook likes and used LG to train classifiers
to distinguish users with different attributes. Luo et al. [41] constructed a model to infer household
structures using users’ viewing behaviors in Internet Protocol Television (IPTV) systems, and they
showed promising results. Nie et al. [49] proposed to infer attributes by combing user behaviors
across multiple social medias through a graph-guided model.

Friend-and-behavior-based attribute inference. This article is an extended version of Refer-
ence [22]. Different from Reference [22], we performed measurement studies about the Google+
and Google Play dataset, aggregated attributes into attribute categories, and performed attribute
inference for attribute categories. Jia et al. [30] recently proposed AttriInfer, a Markov Random

Field (MRF)-based method to infer attributes in social networks. Specifically, they modeled the
social network as an MRF and used Loopy Belief Propagation (LBP) [51] to perform inference.
Moreover, since LBP is known to be inefficient for large graphs and not guaranteed to converge
for graphs with loops, they optimized LBP to be one order of magnitude more efficient and guar-
anteed to converge. However, AttriInfer cannot incorporate correlations between attributes, while
our VIAL can.

Other approaches. Bonneau et al. [9] studied the extraction of private user data in online so-
cial networks via various attacks such as account compromise, malicious applications, and fake
accounts. These attacks cannot infer user attributes that users do not provide in their profiles,
while our attack can. Otterbacher [50] studied the inference of gender using users’ writing styles.
Narayanan et al. [48] demonstrated a stronger result, i.e., author identity can be deanonymized
via writing style analysis. Zamal et al. [63] used a user’s tweets and her neighbors’ tweets to infer
attributes. They didn’t consider social structures nor user behaviors. Gupta et al. [26] tried to infer
interests of a Facebook user via sentiment-oriented mining on the Facebook pages that were liked
by the user. Golbeck and her collaborators [1, 21] used a user’s tweets to infer her personality
through participant study. They used both content features and friendship features such as the
number of friends and the egocentric network density. However, our attack model is based on the
heterogeneous social-behavior-attribute network. Sumneret al. [55] studied dark triad personality
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traits prediction through linguistic analysis of tweets. Jurgens [32] used social networks to infer
the locations of users. Li et al. [37] proposed a discriminative influence model to profile users’
home locations by combining their social networks and the geo-location of the tweets posted by
the users. Zhong et al. [65] demonstrated the possibility of inferring user attributes using the list of
locations where the user has checked in. These studies are orthogonal to ours since they exploited
information sources other than the social structures and behaviors that we focus on.

Attribute inference using social structure and behavior could also be solved by a social rec-
ommender system (e.g., Reference [62]). However, such approaches have higher computational
complexity than our method for attacking a targeted user, and it is challenging for them to have
theoretical guarantees as our attack. For instance, the approach proposed by Ye et al. [62] has a
time complexity of O (m · k · f · d ) on a single machine, where m is the number of edges, k is the
latent topic size, f is the average number of friends, and d is the number of iterations. Note that
both our VIAL and this approach can be parallelized on a cluster.

10 CONCLUSION AND FUTURE WORK

In this article, we study the problem of attribute inference via combining social structures and
user behaviors that are publicly available in online social networks. To this end, we first propose
an SBA network model to gracefully integrate social structures, user behaviors, and their interac-
tions with user attributes. Based on the SBA network model, we design a VIAL to perform attribute
inference. We demonstrate the effectiveness of our attack both theoretically and empirically. In
particular, via empirical evaluations on a real-world large scale dataset with 1.1 million users, we
find that attribute inference is a serious practical privacy attack to online social network users and
an attacker can successfully attack more users when considering both social structures and user
behaviors. The fundamental reason why our attack succeeds is that private user attributes are sta-
tistically correlated with publicly available information, and our attack captures such correlations
to map publicly available information to private user attributes.

A few interesting directions for future work include learning the link weights of an SBA net-
work, generalizing VIAL to infer hidden social relationships between users, and defending against
our inference attacks.

APPENDIX

A PROOF OF THEOREM 5.1

According to Equation (7), we have

�s (i )
v = (1 − α )i (MT )i�s (0)

v + α ��
i−1∑
k=0

(1 − α )k (MT )k�	�ev . (12)

Therefore,

lim
i→∞

�s (i )
v = lim

i→∞
α ��

i−1∑
k=0

(1 − α )k (MT )k�	�ev

= α (I − (1 − α )MT )−1�ev . (13)

We note that the matrix (I − (1 − α )MT ) is nonsingular because it is strictly diagonally dominant.

B PROOF OF THEOREM 5.2

The matrix M has non-negative entries, and each row of M sums to be 1. Therefore, M can be
viewed as a transition matrix. In particular, M can be viewed as a transition matrix of the following
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Markov chain on the SBA network: each social node is a state of the Markov chain; the transition
probability from a social node u to another social node x is Mux , i.e., a social node u can only
transit to its social neighbors or hop-2 social neighbors with non-zero probabilities.

When the SBA network is connected, the above Markov chain is irreducible and aperiodic. There-
fore, the Markov chain has a unique stationary distribution �π . Moreover, according to the Perron-
Frobenius theorem [52], we have:

lim
i→∞

(MT )i = [�π �π · · · �π ]

When α = 0, we have �s (i )
v = (MT )i�s (0)

v . Thus, we have

�sv = lim
i→∞

�s (i )
v

= lim
i→∞

(MT )i�s (0)
v

= [�π �π · · · �π ]�s (0)
v

= |Vs |�π ,

where |Vs | is the sum of the entries of �s (0)
v .

C PROOF OF COROLLARY 5.1

When wS = τ · du,S , wBS = τ · du,B , and wAS = τ · du,A for each user u, the Markov chain defined
by the transition matrix M is a random walk on a weighted graph Gw = (Vw ,Ew ), which is de-
fined as follows: Vw = Vs , an edge (u,x ) in Ew means that x is u’s social neighbor or hop-2 social
neighbor in the SBA network, and the weight of the edge (u,x ) ∈ Ew is δux,S ·wux + δux,BS · du,B ·
wB (u,x ) + δux,AS · du,A ·wA (u,x ). We can verify that, on the graph Gw , the weights of all edges
that are incident to a node u sum to du . Therefore, the stationary distribution �π [6] of the random
walk on Gw is

�π =

[
du1

D

du2

D
· · ·

du |Vs |

D

]T

. (14)

Thus, according to Theorem 5.2, we have �svu = |Vs | du

D
.
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