
Linear-Time Self Attention with Codeword Histogram for
Efficient Recommendation

Yongji Wu12∗, Defu Lian2†, Neil Zhenqiang Gong1, Lu Yin3,
Mingyang Yin3, Jingren Zhou3, Hongxia Yang3†

1Duke University, 2University of Science and Technology of China, 3Alibaba Group
1{yongji.wu769, neil.gong}@duke.edu, 2liandefu@ustc.edu.cn,

3{theodore.yl, hengyang.ymy, jingren.zhou, yang.yhx}@alibaba-inc.com

ABSTRACT
Self-attention has become increasingly popular in a variety of se-
quence modeling tasks from natural language processing to recom-
mendation, due to its effectiveness. However, self-attention suffers
from quadratic computational and memory complexities, prohibit-
ing its applications on long sequences. Existing approaches that
address this issue mainly rely on a sparse attention context, either
using a local window, or a permuted bucket obtained by locality-
sensitive hashing (LSH) or sorting, while crucial information may
be lost. Inspired by the idea of vector quantization that uses clus-
ter centroids to approximate items, we propose LISA (LInear-time
Self Attention), which enjoys both the effectiveness of vanilla self-
attention and the efficiency of sparse attention. LISA scales linearly
with the sequence length, while enabling full contextual attention
via computing differentiable histograms of codeword distributions.
Meanwhile, unlike some efficient attention methods, our method
poses no restriction on casual masking or sequence length. We
evaluate our method on four real-world datasets for sequential rec-
ommendation. The results show that LISA outperforms the state-of-
the-art efficient attention methods in both performance and speed;
and it is up to 57x faster and 78x more memory efficient than vanilla
self-attention.

CCS CONCEPTS
• Information systems → Recommender systems; Users and
interactive retrieval.

KEYWORDS
self-attention, efficient-attention, sequential recommendation, quan-
tization

ACM Reference Format:
Yongji Wu, Defu Lian, Neil Zhenqiang Gong, Lu Yin, Mingyang Yin, Jingren
Zhou, Hongxia Yang. 2021. Linear-Time Self Attention with Codeword His-
togram for Efficient Recommendation. In Proceedings of the Web Conference
2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3442381.3449946

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449946

1 INTRODUCTION
Since the introduction of the self-attention mechanism in Trans-
formers [33], it has seen incredible success in a variety of sequence
modeling tasks in a variety of fields, such as machine translation [4],
object detection [37], music generation [?] and bioinformatics [25].
Recently, self-attention has also demonstrated its formidable power
in recommendation [17, 30, 45].

However, despite impressive performance attributable to its abil-
ity to identify complex dependencies between elements in input
sequences, self-attention based models suffers from soaring compu-
tational and memory costs when facing sequences of greater length.
As a consequence of computing attention scores over the entire
sequence for each token, self-attention takes 𝑂 (𝐿2) operations to
process an input sequence of length 𝐿. This hinders the scalability
of models built on self-attention in many settings.

Recently, a number of solutions have been proposed to address
this issue. The majority of these approaches [1, 2, 6, 18, 27, 32, 43]
leverages sparse attention patterns, limiting the number of keys
that each query can attend to. Although these sparse patterns can
be established in a variety of content-depended ways like LSH [18],
sorting [32] and k-means clustering [27], crucial information may
be lost by clipping the receptive field for each query. While suc-
cessfully reducing the cost of computing attention weights from
𝑂 (𝐿2𝐷) to 𝑂 (𝐿𝐵𝐷), where 𝐵 is the fixed bucket size, extra cost
incurs in assigning the keys/values into buckets. This cost typically
is still quadratic with respect to 𝐿, and it may cause significant
overheads dealing with shorter sequences. We observe that Re-
former [18] could be 7.6x slower than the vanilla Transformer on
sequences of length 128. Other techniques are also being employed
to improve the efficiency of self-attention. For instance, low-rank
approximations of the attention weights matrix is used in [36]. This
method, however, only supports a bidirectional attention mode and
assumes a fixed length of input sequences.

We observe that self-attention essentially computes a weighted
average of the input sequences for each query, and the weights are
computed based on the inner product between the query and the
keys. For each query, keys with larger inner product will be paid
more attention to. We relate this to the Maximum Inner Product
Search (MIPS) problem. The MIPS problem is of great importance
in many machine learning problems [11, 20, 28], and fast approx-
imate MIPS algorithms are well studied by researchers. Among
them, vector (product) quantization [8, 13, 14] has been a popular
and successful method. Armed with vector quantization, we no
∗This work was conducted while he was a research intern at Alibaba Group.
†Corresponding authors.

https://doi.org/10.1145/3442381.3449946
https://doi.org/10.1145/3442381.3449946

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Y. Wu, et al.

0 220 10

3 301 13

21 2 31 0

301200

sequence (codeword indices) codeword histograms

Figure 1: Illustration of codeword histograms. There are
four codewords in each of the four codebooks.

longer have to exhaustively compute the inner product between
a given query and all the 𝑁 points in the database. We can only
compute that for the 𝐵 centroids (i.e., codewords), where 𝐵 is a
budget hyperparameter. We therefore successfully avoid redundant
computations since the points belong to the same centroid share
the same inner product with the query.

The idea of vector quantization has also been applied to com-
press the item embedding matrix and improve the memory and
search efficiency of recommendation systems [5, 23]. In the state-
of-the-art lightweight recommendation model, LightRec [23], a set
of 𝐵 differentially learnable codebooks are used to encode items,
each of which is composed of𝑊 codewords. An item is represented
by a composition of the most similar codeword within each code-
book. Hence we only need to store the indices of its corresponding
codewords, instead of its embedding vector. Since the codeword
index in a codebook can be compactly encoded with log𝑊 bits, the
overall memory requirements to store item representations can be
reduced from 4𝑁𝐷 bytes to 1

8𝑁𝐵 log𝑊 + 4𝐷𝐵𝑊 bytes [23].
Inspired by the benefit that redundant inner product compu-

tations can be circumvented in MIPS algorithms based on vector
quantization, and the ability of using codebooks to quantize any
embedding matrix, we propose LISA (LInear-time Self-Attention),
an efficient attention mechanism based on computing codeword
histograms. Equipped with a series of codebooks to encode items
(or any form of tokens), LISA can dramatically reduce the costs
of inner product computation in a similar vein. Since each item
(token) is represented as a composition of codewords, and the entire
input sequence can be compressed to a histogram of codewords
for each codebook (illustrated in Figure 1), we are essentially per-
forming attention over codewords. The histograms are used to
compute the attention weights matrix in 𝑂 (𝐿) time. We then pool
over the codewords with the attention weights to get the outputs.
To enable self-attention in a unidirectional setting (i.e., with casual
masking [18]), we can resort to the mechanism of prefix-sums and
compute a histogram at each position of the sequence.

Compared to the efficient attention methods that rely on sparse
patterns, our proposed method performs full contextual attention
over the input sequence, with a computational and memory com-
plexity linear in the sequence length. Our proposed method also
enjoys the compression of item embeddings brought by LightRec.
Particularly, in an online recommendation setting, our method can
encapsulate a user’s entire history with a fixed size histogram,
greatly reduce the storage costs.

Our contributions can be summarized as follows:

• We propose LISA (LInear-time Self-Attention), a novel attention
mechanism for efficient recommendation that reduces the com-
plexity of computing attention scores from 𝑂 (𝐿2𝐷) to 𝑂 (𝐿𝐵𝑊),
while simultaneously enabling model compression. The total
number of codewords 𝐵𝑊 is a budget hyperparameter balancing
between performance and speed.

• We also propose two variants of LISA, one of them allows soft
codeword assignments, and the other uses a separate codebook
to encode sequences. These techniques allow us to use much
smaller codebooks, resulting in further efficiency improvements.

• We conduct extensive experiments on four real-world datasets.
Our proposed method obtains similar performance to vanilla self-
attention, while significantly outperforms the state-of-the-art
efficient attention baselines in both performance and efficiency.

2 RELATEDWORK
2.1 Applications of Self-Attention Mechanisms
The scaled dot product self-attention introduced in Transform-
ers [33] has been extensively used in natural language understand-
ing [10, 41]. As a powerfulmechanism that connects all tokens in the
inputs with a pooling operation based on relevance, self-attention
has also made tremendous impacts in various other domains like
computer vision [39, 44], graph learning [34].

Recently, self-attention networks are successfully applied to se-
quential recommendation. Kang and McAuley [17] adapted a Trans-
former architecture by optimizing the binary cross-entropy loss
based on inner product preference scores, while Zhang et al. [45]
propose to optimize a triplet margin loss based on Euclidean dis-
tance preference. Self-attention is also used for geographical model-
ing in location recommendation [22, 24]. They have demonstrated
significant performance improvements over the RNN based models.

2.2 Improving Efficiency of Attention
Considerable efforts have beenmade trying to scale Transformers to
long sequences. Transformer-XL in [9] captures longer-term depen-
dency by employing a segment-level recurrent mechanism, which
splits the inputs into segments to perform attention. Sukhbaatar
et al. [29] limited the self-attention context to the closest samples.
However, these techniques do not improve the 𝑂 (𝐿2) asymptotic
complexity of self-attention.

In another line of work, attempts in reducing the asymptotic
complexity are made. Child et al. [6] proposed to factorize the at-
tention computation into local and strided ones. Tay et al. [32],
on the other hand, improved local attention by introducing a dif-
ferentiable sorting network to re-sort the buckets. Reformer [18]
hashes the query-keys into buckets via hashing functions based on
random projection, and attention is computed within each bucket.
In a similar manner, Roy et al. [27] assign tokens to buckets through
clustering. Built on top of ETC [1], Big Bird [43] considers a mixture
of various sparse patterns, including sliding window attention and
random attention. Clustered Attention, introduced in [35], however,
groups queries into clusters and perform attention on centroids.
Linformer [36] resorts to a low-rank projection on the length dimen-
sion. However, it can only operate in a bidirectional mode without
casual masking.

Linear-Time Self Attention with Codeword Histogram for Efficient Recommendation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Most of the aforementioned approaches rely on sparse attention
patterns, while our method performs full contextual attention over
the whole sequence. Besides, Linformer and Sinkhorn Transformer
assume a fixed sequence length due to the use of sorting network
and projection, while our method poses no such constraint. Our
method is also notably faster than the existing approaches, enjoying
an asymptotic complexity of 𝑂 (𝐿), while inner product can be
stored in a table.

3 METHODOLOGY
In this section, we first quickly go through some of the underlying
preliminaries. Then we introduce our proposed method step by
step, starting from a simple case. We propose two more variants for
further efficiency improvement. Finally, we analysis the complexity
of our method.

3.1 Preliminaries
3.1.1 Regular Self-Attention Mechanism. The vanilla dot-product
attention, introduced in [33], accepts matrices 𝑄,𝐾,𝑉 representing
queries, keys and values, and computes the following outputs:

𝑉 ′ = softmax
(
𝑄𝐾𝑇
√
𝐷

)
𝑉 (1)

In the self-attention setting, we let the input sequence attend to
itself. Concretely, given an input sequence 𝑋 ∈ R𝐿×𝐷 , we linearly
project 𝑋 via three matrices to get 𝑄 = 𝑋𝑃𝑄 , 𝐾 = 𝑋𝑃𝐾 and 𝑉 =

𝑋𝑃𝑉 . The results are then computed using Eq. (1). This operation
can be interpreted as computing a weighted average of the all other
positions for every position in the sequence.

Self-attention has already been widely used in recommenda-
tion [17, 30, 40, 42]. Kang and McAuley [17] used self-attention
along with the feed-forward network from [33] to encode user’s
sequential behaviors, and recommend the next item by computing
the inner product between the encoded representation and target
items’ embeddings.

However, the computation of Eq. (1) suffers from quadratic com-
putational and memory complexities, as computing the attention
scores (the softmax term) and performing the weighted average
both require 𝑂 (𝐿2𝐷) operations.

3.1.2 Embedding Quantization with Codebooks. Our efficient at-
tention method is motivated by the idea of using codebooks to
compress the embedding matrix [5, 12, 16, 23]. LightRec, proposed
in [23], encodes items with a set of 𝐵 codebooks, each contains𝑊
𝐷-dimensional codewords that serve as a basis of the latent space.
An item’s embedding 𝑥𝑖 can be approximately encoded as:

𝑥𝑖 ≈
𝐵∑
𝑏=1

𝑐𝑏
𝑤𝑏
𝑖

, s.t.𝑤𝑏𝑖 = argmax
𝑤

sim(𝑥𝑖 , 𝑐𝑏𝑤) (2)

where sim(𝑥,𝑦) is a similarity metric between two vectors 𝑥,𝑦.
In LightRec, a bilinear similarity function is adopted: sim(𝑥,𝑦) =
𝑥𝑇𝑾𝑦 + ⟨𝒘1, 𝑥⟩ + ⟨𝒘2, 𝑦⟩. 𝑐𝑏𝑤 denotes the𝑤-th codeword in the 𝑏-th
codebook.𝑾 ,𝒘1,𝒘2 are learnable weights.

At training time, the codebooks and the item embeddings can
be jointly trained using a softmax relaxation and the straight-
through estimator [3]. At the inference stage, the item embed-
ding 𝑥𝑖 can be discarded completely. For each item 𝑖 , we only

250 20 52 22 2 55

query

codebook index count

0

1

2

3

4

5

6

7

2

6

4

sequence (codeword indices)

<latexit sha1_base64="pjGXNgXXOJHXU+mPtKvNtcU/I50=">AAACJnicbVDLSgMxFM3UV62vUZdugkWsFMpMadVNoejGZYW+sC8yaaYNzTxMMoUyzNe48VfcuKiIuPNTTNspaPXCDeecey8391g+o0IaxqeWWFvf2NxKbqd2dvf2D/TDo7rwAo5JDXvM400LCcKoS2qSSkaaPifIsRhpWKPbWb0xJlxQz63KiU86Dhq41KYYSSX19NL4vNS2OcKhGYUPUSZPuuFjt4p7RgTVk71c8nykMltY0qKixYuenjZyxjzgX2DGIA3iqPT0abvv4cAhrsQMCdEyDV92QsQlxYxEqXYgiI/wCA1IS0EXOUR0wvmZETxTSh/aHlfpSjhXf06EyBFi4liq00FyKFZrM/G/WiuQ9nUnpK4fSOLixSI7YFB6cOYZ7FNOsGQTBRDmVP0V4iFSpknlbEqZYK6e/BfU8zmzmDPuC+nyTWxHEpyAU5ABJrgCZXAHKqAGMHgCL2AK3rRn7VV71z4WrQktnjkGv0L7+gbAU6QV</latexit>

v0 =
1

Z
(2eqT c0c0 + 6eqT c2c2 + 4eqT c5c5) -

-

-

-

-

Figure 2: Example of using codeword histogram to avoid re-
dundant computation in attention, where a single codebook
is used. Here 𝑣 ′ is the attention output for a given query 𝑞, 𝑍
is a normalization constant.

store its corresponding codeword indices in each codebook, i.e.,
[𝑤1
𝑖
,𝑤2
𝑖
, . . . ,𝑤𝐵

𝑖
] ∈ {1, . . . ,𝑊 }𝐵 . Because each codeword index can

be encoded with log2𝑊 bits, the memory cost of storing 𝑁 items
is reduced from 4𝑁𝐷 bytes to 1

8𝑁𝐵 log2𝑊 + 4𝐵𝑊𝐷 bytes, where
the first term is for codeword indices, and the second term is for
codebooks.

3.2 Motivation: A Simple Case
To illustrate the motivation behind our proposed method, we first
look at a simple case where a single codebook is used to encode
items.

In this case, an item is directly represented by the codeword with
the maximum relevance score to it. The 𝑖-th item in the sequence 𝑋
is therefore given by: 𝑥𝑖 = 𝑐𝑤𝑖

, where 𝑤𝑖 = argmax𝑤 sim(𝑥𝑖 , 𝑐𝑤)
and 𝑐𝑤 ∈ R𝐷 denotes the𝑤-th codeword in the codebook. Then, to
perform the dot-product attention for a query 𝑞 ∈ R𝐷 (with keys
and values being the sequence 𝑋), we compute the inner product
between 𝑞 and the corresponding codeword 𝑐𝑤𝑖

for every item in
the sequence. The output 𝑣 ′ of the attention is computed as follows:

𝑣 ′ =

∑𝐿
𝑖=1 exp (𝑞𝑇 𝑥𝑖)𝑥𝑖∑𝐿
𝑖=1 exp(𝑞𝑇 𝑥𝑖)

=

∑𝐿
𝑖=1 exp (𝑞𝑇 𝑐𝑤𝑖

)𝑐𝑤𝑖∑𝐿
𝑖=1 exp(𝑞𝑇 𝑐𝑤𝑖

)
(3)

where 𝐿 is the sequence length. For the sake of simplicity, we omit
the projection matrices 𝑃𝑄 , 𝑃𝐾 , 𝑃𝑉 at this moment. From the above
equation, we observe that we may have repeatedly compute the
inner product of 𝑞 with the same codeword 𝑐𝑤 , since a number of
items in the sequence may all share 𝑐𝑤 as their representations.
This redundant computation significantly hampers the efficiency,
especially when 𝐿 ≫ |Ω𝑋 |, where Ω𝑋 is the set of unique codeword
indices that the 𝐿 items in the sequence correspond to, i.e., Ω𝑋 =

{𝑤 | ∃𝑖 : 𝑤 = 𝑤𝑖 }.
To address this issue, we note that 𝑣 ′ is just a weighted average of

all the codewords in Ω𝑋 , and the weight of each codeword depends
only on its inner product with 𝑞 and its number of occurrences.
Therefore, we only need to count how many times each codeword
𝑐𝑤 in Ω𝑋 is used in the sequence, and compute the inner product
of 𝑞 with 𝑐𝑤 once. The computation of Eq. (3) can be reformulated

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Y. Wu, et al.

as:

𝑣 ′ =

∑
𝑤∈Ω𝑋

𝑓𝑤 exp (𝑞𝑇 𝑐𝑏𝑤)𝑐𝑏𝑤∑
𝑤∈Ω𝑋

𝑓𝑤 exp (𝑞𝑇 𝑐𝑏𝑤)
(4)

We illustrate this idea in Figure 2.

3.3 Linear-Time Self Attention
As we can see, the mechanism of codebook allows us to obtain
the exact results of dot-product attention with less computation
(both in computing the attention scores and computing the final
weighted average), at least in the case of a single codebook. Now,
we turn to the case that multiple codebooks are used. The items
in the sequence are represented by an additive composition of
codewords in all codebooks, as given by Eq. 2. The result of dot-
product attention for a given query 𝑞 is as follows:

𝑣 ′ =

∑𝐿
𝑖=1 exp (𝑞𝑇

∑𝐵
𝑏=1 𝑐𝑤𝑏

𝑖
)∑𝐵

𝑏=1 𝑐𝑤𝑏
𝑖∑𝐿

𝑖=1 exp(𝑞𝑇
∑𝐵
𝑏=1 𝑐𝑤𝑏

𝑖
)

(5)

Unlike the single codebook scenario, although in each codebook
many items may correspond to the same codeword, their represen-
tations will diverge after the additive composition. Hence we still
have to compute the inner product between 𝑞 and every item 𝑥𝑖 in
the sequence.

To tackle this problem, we propose to relax the attention op-
eration. We split the computation, perform the attention in each
codebook separately, and then take the sum:

𝑣 ′′ =
𝐵∑
𝑏=1

∑𝐿
𝑖=1 exp (𝑞𝑇 𝑐𝑏𝑤𝑏

𝑖

)𝑐𝑏
𝑤𝑏
𝑖∑𝐿

𝑖=1 exp (𝑞𝑇 𝑐𝑏𝑤𝑏
𝑖

)
(6)

This additive compositional formulation can be considered as a
form of "multi-head" attention, where each attention head corre-
lates with a codebook. Since different codebooks form different
latent spaces, Eq. (6) in fact, aggregates information from differ-
ent representational subspaces of the items, using independent
attention weights.

Equipped with the above relaxation, we can once again reuse
the inner product by computing the frequencies of each codeword
that appeared in the sequence, separately for every codebook. We
can reformulate the computation of Eq. (6) as follows:

𝑣 ′′ =
𝐵∑
𝑏=1

∑
𝑤∈Ω𝑏

𝑋
𝑓 𝑏𝑤 exp (𝑞𝑇 𝑐𝑏𝑤)𝑐𝑏𝑤∑

𝑤∈Ω𝑏
𝑋
𝑓 𝑏𝑤 exp (𝑞𝑇 𝑐𝑏𝑤)

(7)

where Ω𝑏
𝑋

= {𝑤 | ∃𝑖 : 𝑤 = 𝑤𝑏
𝑖
} is the set of unique codeword

indices of the 𝑏-th codebook, and 𝑓 𝑏𝑤 is the number of occurrences
of 𝑐𝑏𝑤 in the sequence.

However, the cardinality of Ω𝑏
𝑋
varies across different sequences

𝑋 and different codebooks 𝑏. The computation of Eq. (7) therefore
operates on different sizes of tensors, which is sub-optimal for
efficient batching in GPU and TPU [19]. For batching purpose, we
perform the attention over all codewords in each codebook, fixing
the "context size" of the attention to𝑊 :

𝑣 ′′ =
𝐵∑
𝑏=1

∑𝑊
𝑤=1 𝑓

𝑏
𝑤 exp (𝑞𝑇 𝑐𝑏𝑤)𝑐𝑏𝑤∑𝑊

𝑤=1 𝑓
𝑏
𝑤 exp (𝑞𝑇 𝑐𝑏𝑤)

(8)

For a codeword 𝑐𝑏𝑤 that is not used by any item in the sequence, the
occurrence count 𝑓 𝑏𝑤 = 0, 𝑐𝑏𝑤 will not contribute to the weighted
average. Hence Eq. (7) and Eq. (8) is equivalent.

Now we put it to the self-attention setting, where we use the
input sequence as queries to attend to itself, the 𝑖-th query is just
𝑥𝑖 , i.e., 𝑞𝑖 = 𝑥𝑖 =

∑𝐵
𝑏=1 𝑐

𝑏

𝑤𝑏
𝑖

. Since we regard the attention in differ-
ent codebook as independent heads that attend in different latent
spaces, we further reduce the computation of the inner product
from 𝑞𝑇

𝑖
𝑐𝑏

′
𝑤′ =

∑𝐵
𝑏=1 𝑐

𝑏

𝑤𝑏
𝑖

𝑐𝑏
′
𝑤′ to 𝑐𝑏

′

𝑤𝑏′
𝑖

𝑐𝑏
′
𝑤′ , considering only the term

in the same codebook. This gives us:

𝑥 ′𝑖 =
𝐵∑
𝑏=1

∑𝑊
𝑤′=1 𝑓

𝑏
𝑤′ exp (𝑐𝑏

𝑇

𝑤𝑏
𝑖

𝑐𝑏
𝑤′)𝑐𝑏𝑤′∑𝑊

𝑤′=1 𝑓
𝑏
𝑤′ exp (𝑐𝑏

𝑇

𝑤𝑏
𝑖

𝑐𝑏
𝑤′)

(9)

where 𝑥 ′
𝑖
is the 𝑖-th output of the attention operation.

Eq. (9) computes the bidirectional attention (each position can
attend over all positions in the input sequence), since 𝑓 𝑏

𝑤′ indicates
the frequency of 𝑐𝑏

𝑤′ in the entire sequence. However, in the rec-
ommendation setting, the model should consider only the first 𝑖
items when making the 𝑖 + 1-th prediction [17], we therefore favor
a unidirectional setting (each position can only attend to positions
up to and including that position). This requires us to compute
the codeword histogram of every codebook, up to 𝑖-th position,
for each 𝑖 = 1, . . . , 𝐿. This can be implemented via the mechanism
of prefix-sum. We first transform the codeword index 𝑤𝑏

𝑖
into a

one-hot representation 𝑒𝑏
𝑖
= one-hot(𝑤𝑏

𝑖
), where 𝑒𝑏

𝑖
∈ {0, 1}𝑊 . The

one-hot vectors 𝑒𝑏
𝑖
for each codebook 𝑏 at each position 𝑖 forms

a tensor E of shape 𝐿 × 𝐵 ×𝑊 , we compute the prefix-sum along
the first dimension to get the histograms up to each position in the
sequence:

F𝑖,:,: =
𝑖∑
𝑗=1

E𝑖,:,: (10)

There exists an efficient algorithm [7, 21] for prefix-sum with a
computational complexity of 𝑂 (log𝐿) when compute in parallel.

As we mentioned earlier, in the vanilla self-attention [33], linear
projections are applied on the input sequence𝑋 to get queries, keys
and values. Similarly, we can directly apply the projection matrices
𝑃𝑄 , 𝑃𝐾 , 𝑃𝑉 on the codebooks since every item in the input sequence
𝑋 is just a composition of codewords. Combining this with Eq. (10),
we obtain the following unidirectional attention mechanism:

𝑥 ′𝑖 =
𝐵∑
𝑏=1

∑𝑊
𝑤′=1 F𝑖,𝑏,𝑤′ exp

(
(𝑃𝑄𝑐𝑏

𝑤𝑏
𝑖

)𝑇 (𝑃𝐾𝑐𝑏
𝑤′)

)
𝑃𝑉 𝑐𝑏

𝑤′∑𝑊
𝑤′=1 F𝑖,𝑏,𝑤′ exp

(
(𝑃𝑄𝑐𝑏

𝑤𝑏
𝑖

)𝑇 (𝑃𝐾𝑐𝑏
𝑤′)

) (11)

As we only need to compute the inner product between code-
words in the same codebook, we can store them (after taking the
exponent) in tables, and retrieve required terms via table lookup
at inference time. We can achieve this by storing 𝐵 tables with𝑊 2

items each, resulting in a memory cost of𝑂 (𝐵𝑊 2). However, this is
not feasible without embedding quantization via codebooks, which
leads to memory complexity of 𝑂 (𝑁 2), where 𝑁 ≫ 𝐵𝑊 is the
number of items. We present the workflow of LISA in Figure 3, and
we outline the main algorithm for LISA formally in Algorithm 1.

Linear-Time Self Attention with Codeword Histogram for Efficient Recommendation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

2.2 4.01.1 1.5

1.56.02.1 1.7

5.0 1.1

2.21.7

2.1

0.3 6.0

0.3

2 1

1

11
0 1

1

1
1

0

1
1

2

0
2

0

0

001 0
011 0

021 0
022 0

122 0
12

05
01

0

3
23

1

0

sequence
(codeword indices)

index
corresponding

rows

compute the histogram for each
codebook at each position

histograms

inner product tables

1.1

1.1

2.2

1.1

2.2

1.5

0.3 2.1

1.7

6.01.7

5.0 2.1

0.3

1.7

6.0

5.0

0.3

0.3

2.1

5.0

6.0

0.3

2.1

.00

.00

.00

.00

.00

.00

.00 .00

.00

.44.25

.94 .00

.03

.00

.98

.85

.05

.02

.31

1.0

.95

.06

.12

a!ention scores
(w.r.t. codewords in each codebook)

codebooks projected by

sum-pooling

multiply & normalize weighted sum results

<latexit sha1_base64="7AGsOJBdbYfwKrYVthHa7RZbKlo=">AAAB+nicbVDLSgNBEOyNrxhfGz16GQyCp7Arih5DvHiMYBIhWcLsZDYZMvtgplcJaz7FiwdFvPol3vwbJ8kKmlgwTFHVTXeXn0ih0XG+rMLK6tr6RnGztLW9s7tnl/dbOk4V400Wy1jd+VRzKSLeRIGS3yWK09CXvO2PrqZ++54rLeLoFscJ90I6iEQgGEUj9exyvYsi5Jq0f/6eXXGqzgxkmbg5qUCORs/+7PZjloY8Qiap1h3XSdDLqELBJJ+UuqnmCWUjOuAdQyNqxnjZbPUJOTZKnwSxMi9CMlN/d2Q01Hoc+qYypDjUi95U/M/rpBhcepmIkhR5xOaDglQSjMk0B9IXijOUY0MoU8LsStiQKsrQpFUyIbiLJy+T1mnVPa86N2eVWj2PowiHcAQn4MIF1OAaGtAEBg/wBC/waj1az9ab9T4vLVh5zwH8gfXxDYZek4U=</latexit>

B ⇥ W ⇥ W

<latexit sha1_base64="0ch2SlilaS1OZtJmTmumE2ElRaw=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TLExsIigvmQ5Ah7m71kye7dsTsnhCO/wsZCEVt/jp3/xk1yhUYfDDzem2FmXpBIYdB1v5zCyura+kZxs7S1vbO7V94/aJk41Yw3WSxj3Qmo4VJEvIkCJe8kmlMVSN4Oxtczv/3ItRFxdI+ThPuKDiMRCkbRSg+3PRSKG1Lvlytu1Z2D/CVeTiqQo9Evf/YGMUsVj5BJakzXcxP0M6pRMMmnpV5qeELZmA5519KI2jV+Nj94Sk6sMiBhrG1FSObqz4mMKmMmKrCdiuLILHsz8T+vm2J45WciSlLkEVssClNJMCaz78lAaM5QTiyhTAt7K2EjqilDm1HJhuAtv/yXtM6q3kXVvTuv1Op5HEU4gmM4BQ8uoQY30IAmMFDwBC/w6mjn2Xlz3hetBSefOYRfcD6+ATWfkAQ=</latexit>

L ⇥ B
<latexit sha1_base64="oPp1gXT8pc4ycNaIpYg7frtATG4=">AAAB+3icbZC7SgNBFIbPxluMtzWWNoNBsAq7omgZYmNhEcFcIFnC7GQ2GTJ7YeasGJa8io2FIra+iJ1v4yTZQhN/GPj4zzmcM7+fSKHRcb6twtr6xuZWcbu0s7u3f2Aflls6ThXjTRbLWHV8qrkUEW+iQMk7ieI09CVv++ObWb39yJUWcfSAk4R7IR1GIhCMorH6dvmuhyLkmtRJDu2+XXGqzlxkFdwcKpCr0be/eoOYpSGPkEmqddd1EvQyqlAwyaelXqp5QtmYDnnXYETNGi+b3z4lp8YZkCBW5kVI5u7viYyGWk9C33SGFEd6uTYz/6t1UwyuvUxESYo8YotFQSoJxmQWBBkIxRnKiQHKlDC3EjaiijI0cZVMCO7yl1ehdV51L6vO/UWlVs/jKMIxnMAZuHAFNbiFBjSBwRM8wyu8WVPrxXq3PhatBSufOYI/sj5/AM95k6Q=</latexit>

L ⇥ B ⇥ W

<latexit sha1_base64="oPp1gXT8pc4ycNaIpYg7frtATG4=">AAAB+3icbZC7SgNBFIbPxluMtzWWNoNBsAq7omgZYmNhEcFcIFnC7GQ2GTJ7YeasGJa8io2FIra+iJ1v4yTZQhN/GPj4zzmcM7+fSKHRcb6twtr6xuZWcbu0s7u3f2Aflls6ThXjTRbLWHV8qrkUEW+iQMk7ieI09CVv++ObWb39yJUWcfSAk4R7IR1GIhCMorH6dvmuhyLkmtRJDu2+XXGqzlxkFdwcKpCr0be/eoOYpSGPkEmqddd1EvQyqlAwyaelXqp5QtmYDnnXYETNGi+b3z4lp8YZkCBW5kVI5u7viYyGWk9C33SGFEd6uTYz/6t1UwyuvUxESYo8YotFQSoJxmQWBBkIxRnKiQHKlDC3EjaiijI0cZVMCO7yl1ehdV51L6vO/UWlVs/jKMIxnMAZuHAFNbiFBjSBwRM8wyu8WVPrxXq3PhatBSufOYI/sj5/AM95k6Q=</latexit>

L ⇥ B ⇥ W

<latexit sha1_base64="CKgawHOpXqxvIjsDtOiVKdjig74=">AAAB+nicbVDLSgNBEOz1GeNro0cvg0HwFHZF0WOIHjxGMA9IljA7mU2GzD6Y6VXCmk/x4kERr36JN//GSbIHTSwYpqjqprvLT6TQ6Djf1srq2vrGZmGruL2zu7dvlw6aOk4V4w0Wy1i1faq5FBFvoEDJ24niNPQlb/mj66nfeuBKizi6x3HCvZAOIhEIRtFIPbtU66IIuSat/L/p2WWn4sxAlombkzLkqPfsr24/ZmnII2SSat1xnQS9jCoUTPJJsZtqnlA2ogPeMTSiZoyXzVafkBOj9EkQK/MiJDP1d0dGQ63HoW8qQ4pDvehNxf+8TorBlZeJKEmRR2w+KEglwZhMcyB9oThDOTaEMiXMroQNqaIMTVpFE4K7ePIyaZ5V3IuKc3dertbyOApwBMdwCi5cQhVuoQ4NYPAIz/AKb9aT9WK9Wx/z0hUr7zmEP7A+fwBpkpNy</latexit>

B ⇥ W ⇥ D

<latexit sha1_base64="JvpX9yZaB4kkjf7ENrJQL3WWBJM=">AAAB+nicbVDLSgNBEOyNrxhfGz16GQyCp7Arih5D9ODBQwTzgGQJs5PZZMjsg5leJcR8ihcPinj1S7z5N06SPWhiwTBFVTfdXX4ihUbH+bZyK6tr6xv5zcLW9s7unl3cb+g4VYzXWSxj1fKp5lJEvI4CJW8litPQl7zpD6+mfvOBKy3i6B5HCfdC2o9EIBhFI3Xt4m0HRcg1qWb/ddcuOWVnBrJM3IyUIEOta391ejFLQx4hk1Trtusk6I2pQsEknxQ6qeYJZUPa521DI2rGeOPZ6hNybJQeCWJlXoRkpv7uGNNQ61Hom8qQ4kAvelPxP6+dYnDpjUWUpMgjNh8UpJJgTKY5kJ5QnKEcGUKZEmZXwgZUUYYmrYIJwV08eZk0Tsvuedm5OytVqlkceTiEIzgBFy6gAjdQgzoweIRneIU368l6sd6tj3lpzsp6DuAPrM8fWN6TZw==</latexit>

L ⇥ B ⇥ D

<latexit sha1_base64="WBw7MGNKfSynViwv9eH5PUvKo+w=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TKohYVFBPOByRH2NnvJkr29Y3dOCEf+hY2FIrb+Gzv/jZvkCo0+GHi8N8PMvCCRwqDrfjmFpeWV1bXiemljc2t7p7y71zRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjK6mfuuRayNidY/jhPsRHSgRCkbRSg+3pIsi4oZc98oVt+rOQP4SLycVyFHvlT+7/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOponaNn80unpAjq/RJGGtbCslM/TmR0ciYcRTYzoji0Cx6U/E/r5NieOFnQiUpcsXmi8JUEozJ9H3SF5ozlGNLKNPC3krYkGrK0IZUsiF4iy//Jc2TqndWde9OK7XLPI4iHMAhHIMH51CDG6hDAxgoeIIXeHWM8+y8Oe/z1oKTz+zDLzgf349nkDA=</latexit>

L ⇥ D

<latexit sha1_base64="5lhoYm/HVU+oRy6bBSf1yB8cBkM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK9gPaWDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WDGSfoR3QgecgZNVa6rz82e+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b07r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMGoY2g</latexit>

PV

Figure 3: Workflow of LISA (unidirectional mode). Codeword indices of the items in the sequence are taken as input, they
are used to index the inner product tables, and compute the codeword histograms for each codebook at every position. The
histograms are element-wise multiplied with the inner product extracted from the table, and then normalized to obtain the
attention scores, which are used to compute theweighted average of the projected codebooks. In this example, three codebooks
are used, each contains four codewords.

Algorithm 1: LISA
Input :Codeword indices of the sequence Ψ ∈ N𝐿×𝐵
Parameters : Inner product table (after taking the

exponent)M ∈ R𝐵×𝑊 ×𝑊 , where
M𝑏,𝑖, 𝑗 = exp

(
(𝑃𝑄𝑐𝑏

𝑖
)𝑇 (𝑃𝐾𝑐𝑏

𝑗
)
)
; projected

codebooks for values C𝑉 = C𝑃𝑉 ∈ R𝐵×𝑊 ×𝐷

Output :The results of self-attention 𝑋 ′ ∈ R𝐿×𝐷
1 Convert Ψ to one-hot representations

E = one-hot(Ψ) ∈ {0, 1}𝐿×𝐵×𝑊 ;
2 if unidirectional mode then
3 Compute the prefix-sums F𝐿×𝐵×𝑊 of E along the first

dimension according to Eq. (10);
4 else
5 Compute the sums F𝐵×𝑊 of E along the first dimension

and broadcast F to shape 𝐿 × 𝐵 ×𝑊 ;
6 end
7 Gather inner product S ∈ R𝐿×𝐵×𝑊 fromM along the first

two dimensions using indices Ψ;
8 A = F ⊗ S (element-wise multiplication);
9 Normalize the attention scores 𝐴 along the last dimension;

10 𝑋 ′ =
∑𝐵
𝑏=1 A:,𝑏,:C𝑉𝑏,:,:;

11 return X’

3.4 Variants
We notice that the computational cost of LISA is determined by the
fixed context size of 𝐵 ×𝑊 (i.e., the total number of codewords). To
further increase the efficiency, especially on shorter sequences, we
propose to use a separate set of codebooks to encode the sequence
with a much smaller 𝐵 ×𝑊 . In our experiments, we find that using

a 𝐵 ×𝑊 of 128/256 is enough to obtain decent performance, com-
pared to a 𝐵 ×𝑊 of 1024/2048 that we used in our base model. We
investigate the following two variants:
• LISA-Soft: Instead of assigning a unique codeword𝑤𝑏

𝑖
for each

item 𝑖 , we allow a soft codeword assignment. In this case, E
becomes the softmax scores where E𝑖,𝑏,: = softmax(sim(𝑥𝑖 ,𝐶𝑏)).
With a soft assignment we can no longer compress the embedding
matrix by storing discrete codeword indices at inference time.
Hence we directly use the original embeddings for target items.

• LISA-Mini: To enable embedding compression, we still use a
hard codeword assignment. We adopt two separate sets of code-
books: a smaller one (i.e., with a smaller 𝐵 ×𝑊) to encode the
sequence, and a larger one to encode target items.

3.4.1 Extensions. Vanilla Transformer could stack multiple self-
attention layers to improve performance. However, we find that
using multiple attention layers is not particularly helpful in rec-
ommendation, as with [17]. Therefore we only employ a single
layer. Our method can easily extend to multiple layer cases. A
straightforward solution is to use a different set of codebooks to
remap the attention outputs to codewords in a different set of latent
spaces. Our method can also be adapted beyond self-attention, as
long as queries, keys and values can be encoded via codebooks.
Besides recommendation, we can employ LISA in other domains
since codebooks are able to quantize any embedding matrices. For
example, the inputs in NLP tasks are just token embeddings, where
our method can easily be applied.

3.5 Complexity Analysis
We see that computing the codeword histograms takes 𝑂 (𝐿𝐵𝑊)
steps, as we have to compute the prefix-sums along the sequence
length dimension for every codeword in all codebooks. The time
complexity for computing the final outputs (weighted sum of val-
ues) is 𝑂 (𝐿𝐵𝑊𝐷), as this operation is essentially a batched matrix

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Y. Wu, et al.

Table 1: Dataset statistics.

Dataset #users #items #ratings avg. length
Alibaba 99,979 80,000 25M 252.93
ML-1M 6,040 3,416 1M 165.50
Video Games 59,766 33,487 0.5M 8.82
ML-25M 162,541 32,720 25M 153.47

multiplication between an attention score tensor of shape 𝐿×𝐵×𝑊
and a tensor of shape 𝐵 ×𝑊 × 𝐷 representing codebooks. Com-
puting the inner product tables requires 𝑂 (𝐵𝑊 2𝐷) time, but at
inference time, we can save this cost via table lookup. At training
time, this is still a negligible term compared to𝑂 (𝑁𝐿𝐵𝑊𝐷), where
𝑁 is the batch size. Hence, our method has an overall asymptotic
time complexity of 𝑂 (𝐿𝐵𝑊𝐷).

4 EXPERIMENTS
In this section, we empirically analyze the recommendation per-
formance of our proposed method, compared to the vanilla Trans-
former and existing efficient attention methods. Following that, we
present the computational and memory costs of LISA with respect
to different sequence lengths. We also investigate how the number
of codewords affects the performance of our method. Finally, we
show the efficiency improvement brought by LISA in an online
setting. We have also published our code1.

4.1 Datasets
We use four real-world datasets for sequential recommendation
that vary in platforms, domains and sparsity:
• Alibaba: A dataset sampled from user click logs on Alibaba e-
commerce platform, collected from September 2019 to September
2020. This is a dataset that contains relatively longer behavior
sequences than the other datasets used in the experiments.

• Amazon Video Games [26]: A series of product reviews data
crawled from Amazon spanning from 1996 to 2018. The data is
split into separate datasets according to the top-level product
categories. In this work, we consider the "Video Games" category.
This dataset is notable for its sparsity.

• MovieLens [15]: A widely used benchmark dataset of movie
ratings for evaluating recommendation algorithms. We adopt
two versions: MovieLens 1M (ML-1M) and MovieLens 25M (ML-
25M), which include 1 million and 25million ratings, respectively.

Following the common pre-processing practice in [17, 30, 31], we
treat the presence of a rating as implicit feedback. Users and items
with fewer than five interactions are discarded. Table 1 shows the
statistics of the processed dataset.

4.2 Compared Methods
We evaluate our proposed base model, denoted as LISA-Base, as
well as its two variants: LISA-Soft and LISA-Mini. We compare
these methods with the vanilla Transformer [33], as well as the
following efficient attention methods:

1Available at: https://github.com/libertyeagle/LISA

• Reformer [18]: It utilizes LSH to restrict queries to only attend to
keys that fall in the same hash bucket, reducing the computational
complexity to 𝑂 (𝐿 log𝐿). We do not use the reversible layers
since this technique can be applied to all methods, including
ours.

• Sinkhorn Transformer [32]: It extends local attention by learn-
ing a differentiable sorting of buckets. Queries can then attend
to keys in the corresponding sorted bucket. This model has a
computational complexity of𝑂 (𝐿𝐵+(𝐿

𝐵
)2), where 𝐵 is the bucket

size.
• Routing Transformer [27]: It is a clustering-based attention
mechanism. K-means clustering is applied to input queries and
keys. The attention context for a query is restricted to keys that
got into the same cluster with the query. The computational
complexity is 𝑂 (𝐿𝑘 + 𝐿2

𝑘
), where 𝑘 is the number of clusters.

• Improved Clustered Attention [35]: Another clustering-based
attention method. This approach, however, only groups queries
into clusters, and attend cluster centroids over all keys. The top-
𝑘 keys for each cluster centroid are extracted to compute the
attention scores with queries in this cluster. This results in a
computational complexity of𝑂 (𝐿𝐶 +𝐿𝑘), where𝐶 is the number
of clusters.

• Linformer [36]: An efficient attention mechanism based on low-
rank approximation. Linformer projects the keys and values of
shape 𝐿 × 𝐷 to 𝑘 × 𝐷 , effectively reducing the context size to a
tunable hyperparameter 𝑘 . This leads to a complexity of 𝑂 (𝐿𝑘).
We note that it is the only baseline that does not support unidi-
rectional attention.

For simplicity, we ignore the term regarding the latent dimension
size 𝐷 in the above-mentioned asymptotic complexities.

4.3 Settings & Metrics
4.3.1 Parameter Settings. We use the SASRec [17] architecture as
the building block for our experiment setup, as SASRec purely relies
on self-attention to perform sequential recommendation. Hence
we can simply replace the regular Transformer self-attention with

Table 2: Settings for LISA and achieved compression ratio on
each dataset (shown in the last four rows) . We present the
settings of codebooks used to encode sequence. LISA-Mini
also applies a separate set of codebooks to encode target
items, with the same settings as LISA-Base.

LISA-Base LISA-Soft LISA-Mini
#codebooks (𝐵) 8 8 8

#codewords (𝑊) 128 (ML-1M)
256 (Others) 16 32

Alibaba 24.26 - 18.45
ML-1M 3.19 - 2.51
Video Games 13.02 - 10.62
ML-25M 12.78 - 10.44

https://github.com/libertyeagle/LISA

Linear-Time Self Attention with Codeword Histogram for Efficient Recommendation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Recommendation performance onAlibaba,ML-1MandVideoGames. The number in the parentheses in baselinemeth-
ods denotes the bucket size used for Sinkhorn Transformer and Routing Transformer, and #clusters for Clustered Attention.
Bold font denotes the best-performing method among the efficient attention baselines, LISA-Soft and LISA-Mini.

Alibaba ML-1M Video Games
HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Transformer 0.6597 0.5528 0.7569 0.5843 0.6841 0.5376 0.7914 0.5725 0.5525 0.4337 0.6583 0.4680
Linformer 0.3829 0.3007 0.4929 0.3360 0.4171 0.2899 0.5704 0.3394 0.4643 0.3605 0.5671 0.3937
Reformer (LSH-1) 0.6209 0.5189 0.7212 0.5513 0.6753 0.5248 0.7806 0.5590 0.5637 0.4429 0.6694 0.4771
Reformer (LSH-4) 0.6184 0.5156 0.7199 0.5484 0.6492 0.5040 0.7627 0.5408 0.5648 0.4446 0.6685 0.4781
Sinkhorn (32) 0.6298 0.5278 0.7260 0.5589 0.6743 0.5256 0.7796 0.5599 0.5479 0.4289 0.6557 0.4638
Sinkhorn (64) 0.6331 0.5319 0.7289 0.5629 0.6775 0.5310 0.7844 0.5656 0.5469 0.4258 0.6541 0.4605
Routing (32) 0.5742 0.4789 0.6724 0.5106 0.6623 0.5186 0.7704 0.5537 0.5615 0.4412 0.6657 0.4750
Routing (64) 0.6037 0.5037 0.7023 0.5356 0.6535 0.5100 0.7616 0.5452 0.5570 0.4369 0.6604 0.4704
Clustered (100) 0.5924 0.4937 0.6941 0.5266 0.6573 0.5127 0.7697 0.5492 0.5591 0.4394 0.6642 0.4734
Clustered (200) 0.5934 0.4936 0.6962 0.5268 0.6538 0.5095 0.7712 0.5478 0.5578 0.4384 0.6633 0.4725
LISA-Base 0.6660 0.5460 0.7702 0.5798 0.6940 0.5406 0.7962 0.5740 0.6203 0.4788 0.7338 0.5157
LISA-Soft 0.6575 0.5393 0.7622 0.5732 0.6795 0.5229 0.7887 0.5587 0.5951 0.4592 0.7035 0.4944
LISA-Mini 0.6430 0.5146 0.7559 0.5511 0.6853 0.5308 0.7886 0.5644 0.5917 0.4497 0.7102 0.4881

Table 4: Recommendation performance on ML-25M.

HR@5 NDCG@5 HR@10 NDCG@10
Transformer 0.9338 0.8073 0.9752 0.8209
Linformer 0.8627 0.7086 0.9367 0.7329
Reformer (LSH-1) 0.9214 0.7847 0.9694 0.8005
Reformer (LSH-4) 0.9150 0.7765 0.9667 0.7935
Sinkhorn (32) 0.9195 0.7836 0.9682 0.7995
Sinkhorn (64) 0.9161 0.7820 0.9649 0.7980
Routing (32) 0.9167 0.7829 0.9658 0.7990
Routing (64) 0.9215 0.7890 0.9685 0.8044
Clustered (100) 0.9215 0.7830 0.9700 0.7989
Clustered (200) 0.9199 0.7818 0.9692 0.7980
LISA-Base 0.9254 0.7933 0.9713 0.8083
LISA-Soft 0.9269 0.7964 0.9710 0.8109
LISA-Mini 0.9243 0.7900 0.9701 0.8050

our method or the aforementioned baselines to compare the perfor-
mance. We find that the number of attention layers has negligible
impacts on the recommendation performance, and the performance
of using multiple attention heads is consistently worse than single
head [17]. Multiple attention layers and attention heads only lead
to greater computational cost. Hence we use a single layer and a
single head for all compared methods.

All methods are implemented in PyTorch and trained with the
Adam optimizer with a learning rate of 0.001 and a batch size of 128.
We use an embedding dimension of 128, and the dropout rate is set
to 0.1 on all datasets. We train all methods for a maximum of 200
epochs. Following the settings in the original papers, we consider
two settings for Reformer: LSH-1 and LSH-4, which use one and
four parallel hashes, respectively. For Sinkhorn Transformer and
Routing Transformer, we consider a bucket (window) size of 32
and 64. We set the number of clusters to 100 and 200 for Clustered
Attention. We use a low-rank projection size of 128 for Linformer.
We apply casual masking for all methods except Linformer.

We report the settings of codebooks used for all three versions
of our proposed method in Table 2. Since LISA-Base and LISA-Mini
can simultaneously compress the embedding matrix, we also report
the achieved compression ratios on all four datasets. We see that
the item embeddings can be compressed up to 24x.

4.3.2 Metrics. Following [17, 24, 30], we apply two widely used
metrics of ranking evaluation: Hit Rate (HR) and NDCG [38]. HR@𝑘 ,
counts the fraction of times that the target item is among the top-𝑘 .
NDCG@𝑘 , rewards methods that rank positive items in the first
few positions of the top-𝑘 ranking list. We report the two metrics
at 𝑘 = 5 and 𝑘 = 10. The last item of each user’s behavior sequence
is used for evaluation, while the remaining are used for training.
For each user, We randomly generate 100 negative samples that the
user has not interacted with, pairing them with the positive sample
for the compared methods to rank.

4.4 Recommendation Performance
We report the results of the comparison of recommendation per-
formance with baselines in Table 3 and Table 4. Since we also care
about efficiency besides performance, we use bold font to denote
the best-performing method among the efficient attention baselines
and the two more efficient variants of our approach, excluding
LISA-Base.

From the two tables, we have the following important findings:
• LISA-Base consistently outperforms all the state-of-the-art efficient
attention baseline on all four datasets. It attains improvements of
up to 8.78% and 7.29% over the best-performing baseline in terms
of HR@10 and NDCG@10. This demonstrates the effectiveness
of our proposed attention method based on codeword histograms,
as we compute the full contextual attention, compared to the
sparse attention mechanism most baselines built upon. Since we
use more codewords, LISA-Base also outperforms LISA-Soft and
LISA-Mini on all datasets except ML-25M, where it has similar
performance to LISA-Soft. On some metrics and datasets, LISA-
Base even obtains higher performance than Transformer. This
does make sense, considering LISA-Base could attend over a

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Y. Wu, et al.

128/512 256/256 512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1

sequence length / batch size

101

102

In
fe

re
nc

e
ti

m
e

(m
s)

(a) D=128

Transformer
Reformer

LISA-128
LISA-256

Sinkhorn
Routing

Linformer
Clustered

128/512 256/256 512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1

sequence length / batch size

101

102

In
fe

re
nc

e
ti

m
e

(m
s)

(b) D=1024

Figure 4: Inference speed of differentmethods. Note that the y-axis is in a logarithmic scale. For Transformer the plot is shown
up to 16K sequences, as longer sequences will produce an out of memory error on a 16GB V100 GPU.

broader context, encapsulating relevant information from a large
number codewords in each codebook (providing diverse views).

• LISA-Soft and LISA-Mini achieve decent performance with much
smaller codebooks. Even with 16 codewords used per codebook,
LISA-Soft still outperforms the best-performing baseline by 2.46%
and 1.16% in terms of HR@10 and NDCG@10, on average. Only
on ML-1M, it is slightly worse than Sinkhorn Transformer (64)
in terms of NDCG. We suppose that the issue might be we only
use the soft codeword assignment scores when computing the
codeword histograms F, we still use a unique codeword 𝑐𝑏

𝑤𝑏
𝑖

per
codebook to approximate the query. Otherwise, it would pose
challenges to handle the cross terms between different codebooks
when computing the inner product. This could create a poten-
tial mismatch between queries and keys/values, leading to the
performance gap on this dataset. However, in most cases, LISA-
Soft achieves comparable performance with respect to LISA-Base,
using 94% fewer codewords. Even when model compression is
desired, LISA-Mini can still improve the best-performing baseline
by 2.46% in terms of HR@10, on average.

• Our proposed method, and the ones that allocate items to buck-
ets based on similarity, even lead to increased recommendation
performance on Video Games dataset.With an average length of
only 8.8, the user sequences in Video Games tend to be noisy for
making next-item recommendations. Full-context attention in
this scenario would confuse the model with the noise. Reformer,
Routing Transformer and Clustered Attention remedy this issue
by only attending to the informative items selected through hash-
ing or clustering (note that the number of buckets/clusters are
predetermined according to the maximum sequence length in
the dataset and the desired bucket/cluster size). Meanwhile, LISA
addresses this issue by summarizing information from different
codebooks, which can be reckoned as a way of denoising.

• In general, sparse attention via sorting the buckets seems to be more
effective than learning the bucket assignments. We observe that
Sinkhorn Transformer is a strong baseline, considerably outper-
forms Reformer, Routing Transformer and Clustered Attention
on Alibaba and ML-1M, while has almost identical performance
with them on ML-25M. Only on Video Games it performs slightly

worse, due to the above-mentioned intrinsic noise in this dataset.
In this instance, Sinkhorn Transformer will perform full contex-
tual attention, as it divides the sequence into consecutive blocks
of fixed size.

• LSH is better than clustering in bucket assignment. Reformer and
Routing Transformer are both content-based sparse attention
methods that differ mostly by the technique used to infer spar-
sity patterns. Reformer employs LSH while Routing Transformer
resorts to online k-means clustering. We see that Reformer con-
sistently outperforms Routing Transformer. The latter one sorts
tokens by their distances to each cluster centroid and assigns
membership via the top-k threshold. The centroids are updated
by an exponential moving average of training examples. Un-
like Reformer, this approach does not guarantee that each item
belongs to a single cluster, which may partially contribute to
Routing Transformer’s worse performance.

• Unidirectional attention is vital for satisfactory performance in rec-
ommendation. Observing the results of Linformer we can obtain
this conclusion. Because the projection is applied to the length
dimension, causing the mixing of sequence information, it is non-
trivial to apply casual masking for Linformer. This bidirectional
attention leads to significant performance degradation, as our
attempts with other methods in bidirectional mode corroborate
this finding. The designs of certain baseline methods also induce
some issues in order to enforce casual masking. For example, in
the unidirectional mode, Sinkhorn Transformer sorts the buckets
only according to the first token in each bucket. Bidirectional
Clustered Attention could first approximate the full contextual
attention scores with that of the cluster centroid each query be-
longs to, while separately computing on the top-𝑘 keys. However,
this technique is not viable in a unidirectional setting.

• Using a larger bucket size does not necessarily improve the perfor-
mance.We observe this phenomenon from the results of Sinkhorn
Transformer and Routing Transformer. While the bucket size is
increased, hence the context size for each query, we use fewer
buckets/clusters. This would make it harder for k-means clus-
tering and Sinkhorn sorting to group relevant items together.
Hence, one has to carefully tune the bucket size to achieve ideal

Linear-Time Self Attention with Codeword Histogram for Efficient Recommendation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

performance, as it balances between the size of attention con-
text and the quality of sorting / bucket assignment. Surprisingly,
we find using multiple rounds of hashing in Reformer does not
enhance the performance either.

4.5 Computational Cost
4.5.1 Settings. To evaluate the computational efficiency of our pro-
posed method, we compare the inference speed of our method with
the vanilla Transformer and the aforementioned efficient attention
baselines. Following [18, 36], we use synthetic inputs with varying
lengths from 128 to 64K, and perform a full forward pass. The batch
size is scaled inversely with the sequence length, to keep the total
number of items (tokens) fixed. We report the average running time
on 100 batches. For each baseline model, we only consider the less
time-consuming variant. For example, we only report the LSH-1
variant for Reformer, as the LSH-4 version is far more computation-
ally intensive. Since the asymptotic complexity of our proposed
method is 𝑂 (𝐿𝐵𝑊), the inference speed of all the three versions
of LISA only depends on the total number of codewords used to
encode sequences (i.e., 𝐵𝑊). We evaluate two settings of LISA that
use a total of 128 and 256 codewords (denoted as LISA-128 and
LISA-256), corresponding to the settings we used for LISA-Soft and
LISA-Mini in Section 4.4. We only measure the cost of self-attention,
since other components are the same for all compared models. We
consider latent dimension sizes of 128 and 1024. All the experiments
are conducted on a single Tesla V100 GPU with 16GB memory. The
results are shown in Figure 4.

4.5.2 Findings.

• Our method consistently and dramatically outperforms Trans-
former and all efficient attention baselines in inference speed. Only
on sequences of length 128 and using an embedding size of 128,
LISA is slightly slower than Transformer. When 𝐷 = 128, LISA-
128 is 3.1x faster than Reformer on 64K sequences. Benefiting
from using inner product tables, our method is even way faster
than others when 𝐷 = 1024, achieving a speed boost of 57x com-
pared to Transformer on 16K sequences. All other methods take
considerably longer time as the cost of computing the inner prod-
uct dominates in this scenario. Linformer has an almost identical
speed to LISA-128 when 𝐷 = 128. However, its recommenda-
tion performance is notably worse than ours. From Figure 4, we
also verify the linear complexity of LISA, as the inference time
remains constant when the total number of items in a batch is
constant.

• Sinkhorn Transformer and Routing Transformer still suffer from
enormous computational cost with growing sequence length. Es-
pecially when 𝐷 = 128, the inference time increases by 5x for
Sinkhorn and 27x for Routing moving from sequences of 128
to 64K. Both the two methods require 𝑂 (𝐿𝐵) time to compute
query/key dot product within each bucket, where 𝐵 is the bucket
size. Sinkhorn Transformer takes 𝑂 ((𝐿/𝐵)2) time to sort buck-
ets, while Routing Transformer spends𝑂 (𝐿2/𝐵) time to perform
cluster assignments. With the bucket size fixed, the cost of sort-
ing/clustering becomes dominant. Increasing the bucket size, on
the other hand, we would have to pay an extra price in computing
attention scores within each bucket.

Table 5: Memory efficiency of different methods. The num-
bers in the table are the ratios between the peak memory
usage of the Transformer and that of the compared efficient
attention method. Bold font denotes the most memory effi-
cient one.

sequence length
512 1024 2048 4096 8192 16384

Linformer 2.46x 4.48x 8.49x 16.51x 32.65x 65.53x
Reformer 0.66x 1.16x 2.15x 4.16x 8.31x 11.26x
Sinkhorn 0.97x 1.70x 3.15x 6.09x 12.14x 25.74x
Routing 1.27x 2.22x 4.08x 7.73x 14.87x 29.45x
Clustered 2.32x 4.17x 7.85x 15.26x 30.63x 64.91x
LISA-128 2.94x 5.14x 9.55x 18.45x 36.86x 78.26x
LISA-256 1.50x 2.62x 4.87x 9.40x 18.78x 39.93x

• Though the extra overhead dominates when sequences are short,
Reformer tends to be almost linear when facing longer sequences.
We see that hashing items into buckets via LSH is exceptionally
time-consuming. When𝐷 = 128, Reformer is significantly slower
than the vanilla Transformer on sequences shorter than 512,
even slower than on 64K sequences due to larger batch size. Our
method, on the contrary, does not suffer from this issue, being
up to 6.5x faster than Reformer on sequences of 128. On longer
sequences, Reformer scales almost linearly, since the term log𝐿
is quite small in its asymptotic complexity 𝑂 (𝐿 log𝐿).

• Clustered Attention fails to demonstrate its advantage of linear
complexity even on sequences of 64K. From Figure 4, we observe
that the Clustered Attention is indeed linear (although bears the
same extra overhead problem handling short sequences as Re-
former). It seems that there underlies a substantial computational
cost by computing full-contextual attention using the cluster cen-
troids, and then improving the approximation for each query on
the top-𝑘 keys. Clustered Attention is still slower than Reformer
on 64K sequences.

4.6 Memory Consumption
4.6.1 Settings. We also evaluate the memory efficiency of different
methods by measuring the peak GPU memory usage. The settings
of the comparedmethods are the same as the previous section’s. The
latent dimensionality 𝐷 is set to 128. For a given sequence length,
we choose the batch size to be the maximum that all compared
models can fit in memory. We report results on sequences up to
16K long, as the vanilla Transformer could not fit longer sequences
even with a batch size of 1. The compression ratios with respect to
Transformer are shown in Table 5.

4.6.2 Findings. All the efficient attention baselines greatly reduce
the memory consumption on longer sequences. Among which LISA-
128 is the most efficient one, requiring only 1.3% of the memory
needed by Transformer in the best case. Although Reformer enjoys
faster inference speed on long sequences, we see that it is more
memory-hungry than other baselines. This again reflects the LSH
bucketing overhead of Reformer.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Y. Wu, et al.

16 32 48 64 80 96
#codewords / codebook

0.49

0.50

0.51

0.52

0.53

0.54

0.55

N
D

C
G

@
5

(a) Alibaba

LISA-So�
LISA-Mini

16 32 48 64 80 96
#codewords / codebook

0.42

0.43

0.44

0.45

0.46

0.47

0.48

N
D

C
G

@
5

(b) Video Games

LISA-So�
LISA-Mini

Figure 5: The impact of the number of codewords.

2K 4K 8K 16K 32K 64K 128K 256K 512K1024K
sequence length

100

101

102

103

To
ta

li
nf

er
en

ce
ti

m
e

(s
)

Transformer
LISA-256

Figure 6: Inference speed of Transformer and LISA in an in-
teractive setting.

4.7 Sensitivity w.r.t. Number of Codewords
4.7.1 Settings. We investigate the impact of the number of code-
words per codebook (i.e.,𝑊) used in LISA-Soft and LISA-Mini on
recommendation performance. We keep the number of codebooks
to be 8 and vary𝑊 from 16 to 96. We leave the settings of the
codebooks used to encode target items in LISA-Mini unchanged.
We show the results on Alibaba and Video Games in Figure 5.

4.7.2 Findings. The performance of LISA-Mini on Alibaba consis-
tently improves with the increasing number of codewords used.
Due to the sparsity of Video Games, it is challenging to learn two
large codebooks well simultaneously. Hence the performance drops
a bit when using a large number of codewords on this dataset. On
the other hand, the performance of LISA-soft is relatively stable
w.r.t.𝑊 on both datasets, indicating that we can attain desirable
performance with only a small number of codewords, greatly boost
the inference efficiency.

4.8 Improving Efficiency for Online
Recommendation

Herewe consider a practical setting that users and the recommender
interact in a dynamic manner. The recommender makes recommen-
dations based on the user’s historical behaviors. The user then
interacts with the recommendations, and the response is appended
to the user’s history. This process is repeated as the recommender
makes new recommendations using the updated user sequence.

A particular advantage of our method emerges in this setting. In
our method, the computation of the attention scores only depends
on the codeword histogram and the codebooks themselves. For each
user, instead of having to store his entire history sequence at the

Table 6: Performance of LISA-Base using codebooks pre-
trained with the vanilla Transformer.

HR@5 NDCG@5 HR@10 NDCG@10
Alibaba 0.6697 0.5492 0.7711 0.5821
ML-1M 0.7002 0.5456 0.7945 0.5763
Video Games 0.6188 0.4800 0.7333 0.5172
ML-25M 0.9287 0.7991 0.9725 0.8135

cost of 𝑂 (𝐿), we can just save the codeword histogram and the last
item’s codeword indices to represent the user’s state. The codeword
histogram and the indices can be dynamically updated, resulting
in a constant storage cost of 𝑂 (𝐵𝑊). At each inference step, our
method can utilize the stored histogram to compute a weighted
average of codebooks in a constant time of 𝑂 (𝐵𝑊𝐷), compared
with the 𝑂 (𝐿𝐷) complexity for the vanilla self-attention.

We simulate this scenario with randomly generate data. The
total time required to make stepwise inferences from scratch up to
some length 𝐿 is measured. Since most efficient attention baselines
face challenges when dealing with variable sequence length (recall
that Sinkhorn Transformer and Linformer assume a fixed sequence
length as their model parameters depend on this length), we only
compare LISA-256 with the Transformer.

We show the results in Figure 6. We see that our method is
considerably faster than Transformer in this setting, especially at a
larger number of steps. Concretely, our method takes about 0.11ms
to progress a step, no matter how long the sequence it. However, it
would take Transformer 0.98ms to compute attention for a single
querywhen the sequence is at 2K length, 1.50ms at 64K, and 11.01ms
at 1024K, ~100x slower than our method.

4.9 Migrating Codebooks from Vanilla
Self-Attention

4.9.1 Settings. We note that the codebooks serve as a plug and
play module, which can be used to replace any embedding matrix.
We can also train the model based on vanilla self-attention with
codebooks. The pretrained codebooks are directly applied to LISA-
Base and are frozen. We evaluate the performance of this model
and report the results in Table 6.

4.9.2 Findings. We find that directly use codebooks trained with
regular dot-product attention does not cause performance degra-
dation, but actually improves the performance of the LISA-Base
model a little. This implies that our method indeed can approximate
dot-product attention to some extent.

5 CONCLUSIONS AND FUTUREWORKS
In this paper, we propose LISA, an efficient attention mechanism
for recommendation, built upon embedding quantization with code-
books. In LISA, codeword histograms for each codebook are com-
puted over the input sequences. We then use the histograms and
the inner product between codewords to compute the attention
weights, in time linear in the sequence length. Our method performs
on par with the vanilla Transformer in terms of recommendation

Linear-Time Self Attention with Codeword Histogram for Efficient Recommendation WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

performance, while being up to 57x faster. Future works can include
extending LISA to other domains like language modeling.

ACKNOWLEDGMENTS
The work was supported by grants from the National Natural Sci-
ence Foundation of China (No. 62022077 and 61976198), and the
Fundamental Research Funds for the Central Universities.

REFERENCES
[1] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Philip Pham, Anirudh Ravula,

Sumit Sanghai, et al. 2020. Encoding long and structured data in transformers.
arXiv preprint arXiv:2004.08483 (2020).

[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[4] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, et al.
2018. The Best of Both Worlds: Combining Recent Advances in Neural Machine
Translation. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 76–86.

[5] Ting Chen, Martin Renqiang Min, and Yizhou Sun. 2018. Learning K-way D-
dimensional Discrete Codes for Compact Embedding Representations. In Inter-
national Conference on Machine Learning. 854–863.

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms. MIT press.

[8] Xinyan Dai, Xiao Yan, Kelvin KW Ng, Jiu Liu, and James Cheng. 2020. Norm-
Explicit Quantization: Improving Vector Quantization for Maximum Inner Prod-
uct Search. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
51–58.

[9] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 2978–2988.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[11] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
2009. Object detection with discriminatively trained part-based models. IEEE
transactions on pattern analysis and machine intelligence 32, 9 (2009), 1627–1645.

[12] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence 36,
4 (2013), 744–755.

[13] Robert M. Gray and David L. Neuhoff. 1998. Quantization. IEEE transactions on
information theory 44, 6 (1998), 2325–2383.

[14] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-
tization based fast inner product search. In Artificial Intelligence and Statistics.
482–490.

[15] F Maxwell Harper and Joseph A Konstan. 2016. The MovieLens Datasets: History
and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016),
19.

[16] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2010), 117–128.

[17] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[18] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2019. Reformer: The Efficient
Transformer. In International Conference on Learning Representations.

[19] Yuriy Kochura, Yuri Gordienko, Vlad Taran, Nikita Gordienko, Alexandr Rokovyi,
Oleg Alienin, and Sergii Stirenko. 2019. Batch size influence on performance of
graphic and tensor processing units during training and inference phases. In Inter-
national Conference on Computer Science, Engineering and Education Applications.
Springer International Publishing, 658–668.

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[21] Richard E Ladner andMichael J Fischer. 1980. Parallel prefix computation. Journal
of the ACM (JACM) 27, 4 (1980), 831–838.

[22] Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized Rankingwith Importance
Sampling. In Proceedings of The Web Conference 2020. 1093–1103.

[23] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing
Xie. 2020. LightRec: A Memory and Search-Efficient Recommender System. In
Proceedings of The Web Conference 2020. 695–705.

[24] Defu Lian, Yongji Wu, Yong Ge, Xing Xie, and Enhong Chen. 2020. Geography-
Aware Sequential Location Recommendation. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2009–
2019.

[25] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand,
Raphael R Eguchi, Po-Ssu Huang, and Richard Socher. 2020. ProGen: Language
Modeling for Protein Generation. arXiv preprint arXiv:2004.03497 (2020).

[26] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
188–197.

[27] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. 2020. Effi-
cient content-based sparse attention with routing transformers. arXiv preprint
arXiv:2003.05997 (2020).

[28] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). In Advances in neural information
processing systems. 2321–2329.

[29] Sainbayar Sukhbaatar, Édouard Grave, Piotr Bojanowski, and Armand Joulin.
2019. Adaptive Attention Span in Transformers. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. 331–335.

[30] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. 1441–1450.

[31] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. 565–573.

[32] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. 2020. Sparse
Sinkhorn Attention. In International Conference on Machine Learning.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[35] Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. 2020. Fast Trans-
formers with Clustered Attention. Advances in Neural Information Processing
Systems.

[36] SinongWang, Belinda Li, Madian Khabsa, Han Fang, andHaoMa. 2020. Linformer:
Self-Attention with Linear Complexity. arXiv preprint arXiv:2006.04768 (2020).

[37] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local
Neural Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, 7794–7803.

[38] Markus Weimer, Alexandros Karatzoglou, Quoc V Le, and Alex J Smola. 2008.
CoFI Rank - Maximum Margin Matrix Factorization for Collaborative Ranking.
In Advances in Neural Information Processing Systems. 1593–1600.

[39] Jiannan Xiang, Xin Eric Wang, and William Yang Wang. 2020. Learning to Stop:
A Simple yet Effective Approach to Urban Vision-Language Navigation. arXiv
preprint arXiv:2009.13112 (2020).

[40] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen
Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation.. In IJCAI. 3940–3946.

[41] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. 2020.
Layoutlm: Pre-training of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1192–1200.

[42] Shuai Yu, Yongbo Wang, Min Yang, Baocheng Li, Qiang Qu, and Jialie Shen. 2019.
NAIRS: A neural attentive interpretable recommendation system. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining.
790–793.

[43] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, QifanWang, Li Yang, et al. 2020.
Big bird: Transformers for longer sequences. arXiv preprint arXiv:2007.14062
(2020).

[44] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2019. Self-
attention generative adversarial networks. In International Conference on Machine
Learning. PMLR, 7354–7363.

[45] Shuai Zhang, Yi Tay, Lina Yao, and Aixin Sun. 2018. Next item recommendation
with self-attention. arXiv preprint arXiv:1808.06414 (2018).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Applications of Self-Attention Mechanisms
	2.2 Improving Efficiency of Attention

	3 Methodology
	3.1 Preliminaries
	3.2 Motivation: A Simple Case
	3.3 Linear-Time Self Attention
	3.4 Variants
	3.5 Complexity Analysis

	4 Experiments
	4.1 Datasets
	4.2 Compared Methods
	4.3 Settings & Metrics
	4.4 Recommendation Performance
	4.5 Computational Cost
	4.6 Memory Consumption
	4.7 Sensitivity w.r.t. Number of Codewords
	4.8 Improving Efficiency for Online Recommendation
	4.9 Migrating Codebooks from Vanilla Self-Attention

	5 Conclusions and Future Works
	References

