
17

Structural Analysis of User Choices for Mobile App Recommendation

BIN LIU, IBM Thomas J. Watson Research Center
YAO WU, Simon Fraser University
NEIL ZHENQIANG GONG, Iowa State University
JUNJIE WU, Beihang University
HUI XIONG, Rutgers University
MARTIN ESTER, Simon Fraser University

Advances in smartphone technology have promoted the rapid development of mobile apps. However, the
availability of a huge number of mobile apps in application stores has imposed the challenge of finding the
right apps to meet the user needs. Indeed, there is a critical demand for personalized app recommendations.
Along this line, there are opportunities and challenges posed by two unique characteristics of mobile apps.
First, app markets have organized apps in a hierarchical taxonomy. Second, apps with similar functionalities
are competing with each other. Although there are a variety of approaches for mobile app recommendations,
these approaches do not have a focus on dealing with these opportunities and challenges. To this end, in this
article, we provide a systematic study for addressing these challenges. Specifically, we develop a structural
user choice model (SUCM) to learn fine-grained user preferences by exploiting the hierarchical taxonomy
of apps as well as the competitive relationships among apps. Moreover, we design an efficient learning
algorithm to estimate the parameters for the SUCM model. Finally, we perform extensive experiments on a
large app adoption dataset collected from Google Play. The results show that SUCM consistently outperforms
state-of-the-art Top-N recommendation methods by a significant margin.

CCS Concepts: � Information systems → Data mining; Recommender systems; Electronic
commerce;

Additional Key Words and Phrases: Recommender systems, mobile apps, hierarchy structure, structural
choices

This article was supported in part by the Natural Science Foundation of China (71329201) and the
Rutgers 2015 Chancellor’s Seed Grant Program. Y. Wu and M. Ester were supported in part by a Dis-
covery Grant from the National Science and Engineering Research Council of Canada (250960-2012). N. Z.
Gong was supported by the Department of Electrical and Computer Engineering, and College of Engineer-
ing at Iowa State University. J. Wu was supported in part by the National Natural Science Foundation of
China (71322104, 71531001, 71471009, 71490723, 71171007), the National High Technology Research and
Development Program of China (SS2014AA012303), and the Fundamental Research Funds for the Central
Universities.
Authors’ addresses: B. Liu, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598; email:
BenBinLiu@gmail.com; Y. Wu and M. Ester, School of Computing Science, Simon Fraser University, Burnaby,
BC V5A 1S6, Canada; emails: {wuyaow, ester}@sfu.ca; N. Z. Gong, Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50011; email: neilgong@iastate.edu; J. Wu, School of Eco-
nomics and Management, Beihang University, Beijing 100191, China; email: wujj@buaa.edu.cn; H. Xiong
(corresponding author), Department of Management Science and Information Systems, Rutgers Business
School, Rutgers University, Newark, NJ 07102; email: hxiong@rutgers.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1556-4681/2016/11-ART17 $15.00
DOI: http://dx.doi.org/10.1145/2983533

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

http://dx.doi.org/10.1145/2983533

17:2 B. Liu et al.

ACM Reference Format:
Bin Liu, Yao Wu, Neil Zhenqiang Gong, Junjie Wu, Hui Xiong, and Martin Ester. 2016. Structural analysis of
user choices for mobile app recommendation. ACM Trans. Knowl. Discov. Data 11, 2, Article 17 (November
2016), 23 pages.
DOI: http://dx.doi.org/10.1145/2983533

1. INTRODUCTION

Recent years have witnessed the tremendous growth in mobile devices among an in-
creasing number of users and the penetration of mobile devices into every component
of modern life. Indeed, the smartphone market surpassed the PC market in 2011 for
the first time in history.1 Thereafter, the smartphone market has continued to increase
dramatically, e.g., the smartphones shipped in the third quarter of 2013 increased 44%
year-on-year.2 One of the reasons lies in the fact that users are able to augment the
functions of mobile devices by taking the advantage of various feature-rich third-party
applications (or apps for brevity), which can be easily obtained from centralized mar-
kets such as Google Play and App Store. However, the availability of a huge number of
mobile apps in application stores has imposed the challenge of finding the right apps to
meet the user needs. For instance, as of July 2013, Google Play had over 1 million apps
with over 50 billion cumulative downloads, and the number of apps had reached over
1.4 million in January 20153; as of February 2015, App Store had over 1.4 million apps
and a cumulative of over 100 billion apps downloaded.4 As a result, there is a critical
demand for effective personalized app recommendations.

However, for the development of personalized app recommender systems, there are
opportunities and challenges posed by two unique characteristics of mobile apps. First,
application stores have organized apps in a hierarchical taxonomy. For instance, Google
Play groups the apps into 27 categories, such as social, games, and sports according
to their functionalities. These categories can be further divided into subcategories,
e.g., apps in the category of games are further divided into subcategories such as
action, arcade, and puzzle. For the apps in the same category or subcategory, they have
similar functionalities. Then, how a user navigates through the hierarchy to locate
relevant apps represents a fine-grained interest preference of the user. Thus, the first
challenge is how to leverage this hierarchical taxonomy of apps to better profile user
interests and enhance app recommendations. Second, apps with similar functionalities
are competing with each other. For instance, when a user has already adopted Google
Maps as his/her navigation tool, the user might not be interested in other navigation
tools such as Apple Maps. Although there are a variety of existing approaches for
mobile app recommendations, these approaches do not have a focus on dealing with
these opportunities and challenges.

Instead, in this article, we provide a systematic study to address these challenges.
Specifically, we first develop a structural user choice model (SUCM) to learn fine-grained
user preferences by exploiting the hierarchical taxonomy of apps as well as the compet-
itive relationships among apps.5 Since apps are organized as a hierarchical taxonomy,
we model the user choice as two phases. In the first phase, a user decides which type
of apps to choose and then moves to the appropriate app category/subcategory. In the

1The Smartphone Market is Bigger Than the PC Market (2011), http://www.businessinsider.com/smartphone-
bigger-than-pc-market-2011-2.
2Smartphone Sales in the Third Quarter of 2013 (2013), http://www.finfacts.ie/irishfinancenews/
article_1026800.shtml.
3Google Play Statistics, Retrieved January 2015, http://en.wikipedia.org/wiki/Google_Play.
4App Store Statistics, Retrieved January 2015, http://en.wikipedia.org/wiki/App_Store_(iOS).
5Note that the model and algorithms developed in this article can also be applied to other domains in which
items are organized in a hierarchical way.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

http://dx.doi.org/10.1145/2983533
http://www.businessinsider.com/smartphone-bigger-than-pc-market-2011-2
http://www.businessinsider.com/smartphone-bigger-than-pc-market-2011-2
http://www.finfacts.ie/irishfinancenews/article1026800.shtml
http://www.finfacts.ie/irishfinancenews/article1026800.shtml
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/App_Store_(iOS)

Structural Analysis of User Choices for Mobile App Recommendation 17:3

second phase, the user chooses apps in the selected category/subcategory. Such struc-
tural user choice is modeled by a unique choice path over the tree hierarchy, wherein
the choice path starts from the root of the hierarchy and goes down to the app that
is selected by a user. In each step of moving along the choice path, the competitions
between the candidates (i.e., either the same level categories/subcategories or apps in
a chosen category/subcategory) play an important role in affecting user’s choices. We
capture the structural choice procedure by cascading user preferences over the choice
paths through a probabilistic model. Specifically, in our probabilistic model, motivated
by the widely used discrete choice models in economics [Luce 1959; McFadden 1973;
Manski 1977], we model the probability that a user reaches a certain node in the choice
path as a softmax of the user’s preference on the chosen node over the user’s preference
on all the nodes at the sample level. The softmax function is used to capture the compe-
titions between categories/subcategories or apps in a category/subcategory. Moreover,
we model a user’s preference over one node using latent factors, which enables us to
capture the correlations between nodes.

Moreover, we design an efficient learning algorithm to estimate the parameters of
the SUCM model. The major challenge of learning the parameters lies in the softmax
on the leaf nodes (apps) of the tree hierarchy. Indeed, it is impractical to optimize these
softmax functions for a subcategory of apps by directly applying Stochastic Gradient
Descent (SGD), because the time complexity of one SGD step is linear to the number of
apps under the subcategory, which might be very large. To address this challenge, we
relax the softmax term in each subcategory into a hierarchical softmax; thus, the time
complexity of learning parameters is reduced to be logarithm of the number of apps
under the subcategory.

Finally, we collected a large-scale dataset from Google Play to evaluate our approach
and compare SUCM with state-of-the-art approaches. The experimental results show
that SUCM consistently outperforms these methods with a significant margin in terms
of a variety of widely used evaluation metrics for Top-N recommendation.

2. PROBLEM DEFINITION

We first introduce three key concepts and then formally define our app recommendation
problem.

Definition 2.1 (Category Tree). A Category Tree (denoted as �) is a data structure
to organize apps according to their properties (e.g., functionalities). Figure 1 shows an
example Category Tree adopted by Google Play. In a Category Tree, internal nodes
represent categories or subcategories, leaf nodes represent apps, and the children of
an internal node represent the subcategories or the apps that belong to the category/
subcategory represented by the node. We use z to denote an internal node in �, and we
denote by level(z), c(z), π (z), and s(z) the level, the children, the parents, and the siblings
of z, respectively. Moreover, we use zM to denote an internal node whose children are
leaf nodes and use i to represent an app.

We note that an app might belong to multiple categories due to the rich functionalities
provided by it, which makes the category hierarchy not a tree. However, we found that
mobile markets such as Google Play do not place an app into multiple categories based
on the dataset we collected from Google Play, and thus we do not consider this scenario.

Definition 2.2 (Choice Path). A choice path is a sequence of nodes that a user
traverses through the Category Tree �, starting from the root and ending at a leaf
node that corresponds to the app selected by the user. For instance, if a user adopts an
app i, the choice path can be represented as pathi = z0 → z1 → · · · → zM → i. Note
that, given the Category Tree �, the choice path pathi for app i is unique.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:4 B. Liu et al.

Fig. 1. An illustrative example of structural user choice for app adoption in Google Play. First, apps are
organized into a Category Tree. Second, as illustrated by the highlighted and arrowed path, a user makes
an app adoption by traversing a choice path from the root of the tree to the chosen app.

Definition 2.3 (Competing Apps). For an app i, we denote by A(i) the set of apps that
have competing properties (e.g., functionalities) and compete with i to attract users. In
this article, we treat the siblings of an app i under the same category/subcategory in
the Category Tree as the competing apps.

We note that users might have multiple ways to adopt apps, e.g., suggestions from
friends, recommendations from Google Play store, and so forth. However, we assume
that no matter in which way a user is aware of an app, the decision is made on the
functionality of the app and its competitors with similar functionalities, thus following
the choice path we discuss above.

It also should be noted that we do not assume a user only adopts one app in a subcat-
egory. The category/subcategory in the Category Tree provided by mobile markets such
as Google Play is not fine grained enough so some siblings of the app i might provide
slightly different functionalities with i. For example, Facebook, LinkedIn, and Twitter
all belong to Social category. We model the process of one user adopting an app using a
structural choice model. If a user selects multiple apps under a same category, the joint
probability of selecting them together would be optimized (see details in Section 3).

Given the above three concepts, we can formally define our app recommendation
problem as follows: Suppose we are given a set of users denoted as U = {1, 2, . . . ,U },
a set of apps denoted as I = {1, 2, . . . , I}; the apps are organized into a predefined
Category Tree �, each app i has a set of competing apps A(i), a set of adoption records
{(u, i)} indicating which users have adopted which apps, and then our goal is to recom-
mend each user a list of apps that matches his/her interest preference. In the rest of
the article, we use u to index users, and i and j to index apps. Moreover, we use the two
terms app and item interchangeably. Table I shows some important notations used in
this article.

3. STRUCTURAL USER CHOICE MODEL

In this section, we present our SUCM to learn fine-grained user interest preference via
leveraging the Category Tree and competitions between apps for app recommendation.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:5

Table I. Mathematical Notations

Symbol Description
u User index for user set U = {1, 2, . . . ,U }

i, j App index for app set I = {1, 2, . . . , I}
� Predefined Category Tree
z Internal node in Category Tree �, in particular, zM denotes a node whose

children are leaf nodes
pathi Choice path in �: z0 → z1 → · · · → zM → i

π (z), s(z), c(z) Parent, sibling, and children of internal node z in the Category Tree �

pu, qi, qz Latent factor vector for user u, app i, and internal node z in �

bi, bz Bias term for app i and internal node z
yui Affinity score of user u for app i
yuz Affinity score of user u for internal node z

D = {(u, i)} Observed user–app adoption instances
Du Adopted apps by user u

3.1. Model Structural User Choice

As shown in Figure 1, given a Category Tree �, there exists one unique choice path
from the root node to app i, namely,

pathi = z0 → z1 → · · · → zM︸ ︷︷ ︸
Phase I:

locate a subcategory

−→ i.︸ ︷︷ ︸
Phase II:

choose an app

We see that the structural user choice consists of two adoption phases. In the first phase,
a user decides what types of apps to choose and moves to the appropriate category or
subcategory in the Category Tree, namely, traverses z0 → z1 → · · · → zM. In the second
phase, the user makes app adoption decisions by choosing app i among all competing
apps under the located subcategory zM. For example, if a user wants to select the app
Angry Birds under the subcategory Arcade, he would first consider the Games category
and then further locates himself at the Arcade subcategory before he finally chooses
app Angry Birds.

We model the process of a user u traversing path z0 → z1 → · · · → zM → i as a
sequence of decisions made for the multiple competing choices at each choice step.
Specifically, in each step among this decision-making sequence:

—for choosing category or subcategory, user u chooses one child node z from all the
children c(π (z)) of z’s parent node π (z);

—for choosing app, user u chooses app i from all the children of i’s parent node, namely
zM.

Each decision-making step can be seen as a discrete choice model, whose theoretical
foundation is the neoclassical economic theory on preferences and utility built on a
set of axiomatic assumptions [Luce 1959; McFadden 1973; Manski 1977]. The discrete
choice model implies that a user u is endowed a utility value f (u, z) to each alternative
z in a choice set A(z). In our recommendation task, the utility value f (u, z) can be the
affinity score, which captures user preferences, between user u and choice z. Following
the random utility model [Manski 1977], we model the utility as a random variable:

νuz = f (u, z) + εuz, (1)

where f (u, z) is the deterministic part of the utility reflecting user preference, and
εuz is the stochastic part capturing the impact of all unobserved factors that affect
the user’s choice. By assuming the stochastic part εuz to be an independently and
identically distributed log Weibull (type I extreme value) distribution, we can obtain
the multinomial choice model [McFadden 1973]. Specifically, in a multinomial choice

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:6 B. Liu et al.

model, the probability of a user u choosing z from a choice set A(z) takes the form of

Pr(user u choose z|A(z)) = exp(f (u, z))∑
z′∈A(z) exp(f (u, z′))

, (2)

where f (u, z) is a user-preference-dependent utility function. This choice model also
holds for user u choosing app i from app choice set A(i). Note that the choice model

exp(f (u,z))∑
z′∈A(z) exp(f (u,z′)) turns out to be a softmax function of utility value f (u, z). In the following,

we elaborate how we model each phase.

Phase I: Model category/subcategory preference. Following the latent factor models
that are widely used in conventional recommender systems [Salakhutdinov and Mnih
2008; Koren 2008], we use a latent factor vector pu ∈ R

K to represent a user’s latent
interest, where K is the dimension of the latent factor vector. Intuitively, pu captures the
interest of the user u. To capture the hierarchical structural user choice, we associate
an internal node z in the Category Tree with a latent factor vector qz, which represents
the properties (e.g., functionalities) of z in the latent space. Moreover, we define the
affinity score between a user u and an internal node z as

yuz = bz + p�
u qz, (3)

where bz is a bias term for the node z. The category/subcategory node affinity score
represents the preference of a user over the category or the subcategory of apps (e.g.,
Games).

We model the process of a user locating a subcategory as a sequence of decisions made
for the multiple competing choices, starting from the root node and moving along the
Category Tree toward the internal node corresponding to the subcategory. Specifically,
in each step among this decision-making sequence, user u chooses one child node z
from all the children of z’s parent node π (z). Following the choice model as shown in
Equation (2), we assume the utility as the affinity score between user u and internal
node z, i.e.,

f (u, z) = yuz = bz + p�
u qz.

Then, we model the probability of user u choosing the child z from all the children
c(π (z)) of z’s parent node π (z) as a softmax function of the affinity scores between the
user u and the internal nodes c(π (z)). Formally, we have

Pr(z|u, π (z)) = exp(yuz)∑
z′∈c(π(z)) exp(yuz′)

. (4)

The softmax function is used to model the competitions between the nodes in c(π (z)).
As a result, the probability of user u traverses z0 → z1 → · · · → zM to reach the
subcategory zM is cascaded as

Pr(z0 → z1 → · · · → zM|u) =
M∏

m=1

Pr(zm|u, zm−1)

=
M∏

m=1

exp(yuz)∑
z′∈c(zm−1) exp(yuz′)

=
M∏

m=1

exp
(
bz + p�

u qz
)∑

z′∈c(zm−1) exp
(
bz′ + p�

u qz′
) .

(5)

Phase II: Model app adoption. After a user locates at a specific subcategory node zM
whose children are all apps, the user makes an app adoption decision by choosing an app

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:7

i among all competing choices c(zM). We use a latent factor vector qi ∈ R
K to represent

the latent factor of app i. Intuitively, qi encodes the properties (e.g., functionalities) of
app i. Moreover, we define the affinity score between user u and app i as

yui = bi + p�
u qi, (6)

where bi is a bias term for app i. Again, following the choice model as shown in Equa-
tion (2), we assume the utility as the affinity score between user u and app i, i.e.,

f (u, i) = yui = bi + p�
u qi.

Then, we model the probability of user u selecting app i over its competing alternatives
under the subcategory node zM using a softmax function as follows:

Pr(i|u, zM) = exp(yui)∑
j∈c(zM) exp(yuj)

= exp
(
bi + p�

u qi
)∑

j∈c(zM) exp
(
bj + p�

u q j
) ,

(7)

where zM is the parent node of app i and c(zM) includes all competing apps of app i and
i itself. The softmax function is used to model the competitions between apps.

Model the overall structural choice probability. Note that there exists one unique
choice path from the root node to app i, namely,

pathi = z0 → z1 → · · · → zM → i.

Then, the probability of user u choosing app i is the joint probability of u selecting each
node in the choice path pathi, i.e., we have

Pr(i|u) = Pr(i|u, zM) × Pr(z0 → z1 → · · · → zM|u)

= Pr(i|u, zM)
M∏

m=1

Pr(zm|u, zm−1)

= exp
(
bi + p�

u qi
)∑

j∈c(zM) exp
(
bj + p�

u q j
) M∏

m=1

exp
(
bzm + p�

u qzm

)∑
z′∈c(zm−1) exp

(
bz′ + p�

u qz′
) ,

(8)

where the first term Pr(i|u, zM) is user u’s adoption probability of app i under subcat-
egory node zM and the second term

∏M
m=1 Pr(zm|u, zm−1) captures the structural choice

by cascading user preferences over the Category Tree �.

3.2. Model Structural App Dependences

Intuitively, nodes that are closer in the Category Tree � could have more similar
properties. For instance, apps under the subcategory action are more similar to those
under the subcategory arcade than those under the category weather because both
action and arcade belong to the games category. Thus, we associate each internal node
z with a latent variable qz to represent the category/subcategory level properties, and
we model the latent variable qz as a function of the latent variable of z’s parent node qπ(z)
to capture the hierarchical structural dependences between the nodes in the Category
Tree. Formally, we have

qz ∼
{ N (0, σ 2I) if z is the root node
N (qπ(z), σ

2I) otherwise,
(9)

where N (u, σ 2) is a normal distribution with mean u and standard deviation σ .

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:8 B. Liu et al.

3.3. Discussion

Note that our model does not only capture the competitions between apps under the
same categories, but also incorporates the correlations between apps via the latent
factor representations.

—Competition. We use a softmax function to model the probability of selecting a child
node (a subcategory or an app) under a category node. If user u selects a child node
z from all the competing nodes A(z), the value of yuz should be larger than all other
yuz′ where z′ ∈ A(z) and z �= z′. This model characteristic can address the cases when
multiple apps in same categories are adopted.

—Correlation. The latent factor model is able to model the correlations between apps
and categories. For example, if two categories are always liked by the same users,
the latent factors of them will be close to each other in the latent space. As a result,
if we know a user likes one of the two categories, the value of his/her preferences on
the other one will also be large.

Here, we highlight some important differences between our model and previous work
(see Section 5.2 and Section 5.4 for details):

—Instead of fitting a point-wise regression model (e.g., PMF [Salakhutdinov and Mnih
2008] and LLFM [Agarwal and Chen 2009]), the proposed model SUCM optimizes
the choice decision making through choice probabilities cascaded in the hierarchy
structure.

—Previous feature-based latent factor approaches (e.g., SVDFeature [Chen et al. 2012]
and LibFM [Rendle 2010, 2012]) utilize item features by representing the user pref-
erence on an item using a linear combination of the user–item affinities and the
user–feature affinities. Differently, SUCM is designed for structurally organized fea-
tures, and it models the structure by cascading the choice probabilities instead of
linear combinations.

—SUCM generalizes the flat choice model – Collaborative Competitive Filtering
(CCF) [Yang et al. 2011] – to a structural choice model via leveraging the hierarchy
information. We also present an efficient learning algorithm based on Hierarchical
Softmax (See Section 4.1) that can also be used for CCF.

4. PARAMETER ESTIMATION

Let � = {pu, qi, qz, bi, bz}u∈U,i∈I,z∈� denote all parameters to be estimated. Given the
observed user–app adoption records D = {(u, i, pathi)} and the category tree �, we have
the posterior probability distribution of the parameters as follows:

Pr(�|D, �) ∝
U∏

u=1

∏
i∈Du

Pr(i|u, zM)
M∏

m=1

Pr(zm|u, zm−1)
M∏

m=1∀z∈�

Pr
(
qzm|qzm−1 , σ

2I
)
, (10)

where the first term captures the structural user choices and the second term repre-
sents the hierarchical structural dependences of the nodes in the category tree. We
estimate all the parameters via maximizing the log likelihood of the posterior:

arg max
�

⎧⎪⎨
⎪⎩

U∑
u=1

∑
i∈Du

ln Pr(i|u, zM) +
U∑

u=1

∑
i∈Du

M∑
m=1

ln Pr(zm|u, zm−1)

+
M∑

m=1∀z∈�

ln Pr
(
qzm|qzm−1 , σ

2I
)⎫⎪⎬⎪⎭ .

(11)

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:9

Fig. 2. An illustrative example of binary tree for hierarchical softmax under a category/subcategory. All
apps under the category/subcategory (e.g., Music & Audio) are organized using a binary tree. The black
nodes (leaf nodes) are apps, and the white nodes are internal nodes. One example path from root node to app
i is highlighted as n(i, 1) → n(i, 2) → n(i, 3) → n(i, 4), which means the path length L(i) = 4.

Note that the widely used regularizations for latent factor vectors [Salakhutdinov and
Mnih 2008; Koren et al. 2009] can be applied here, but we exclude the regularization
priors for presentation simplicity.

4.1. Hierarchical Softmax

One challenge of directly solving the objective function as shown in Equation (11)
rests in the updating of all the parameters over the probability distribution Pr(i|u, zM),
namely, the first term in Equation (11):

U∑
u=1

∑
i∈Du

ln Pr(i|u, zM) =
U∑

u=1

∑
i∈Du

ln
exp

(
bi + p�

u qi
)∑

j∈c(zM) exp
(
bj + p�

u q j
)

=
∑

(u,i)∈D

⎧⎨
⎩(

bi + p�
u qi

) − ln

⎡
⎣ ∑

j∈c(zM)

exp
(
bj + p�

u q j
)⎤⎦

⎫⎬
⎭ ,

(12)

where c(zM) represents all the apps under the subcategory zM. The updating compu-
tation cost for all the parameters in one user–app adoption instance (u, i) is linear to
the number of apps under zM, which might be very large. To address this challenge, we
leverage hierarchical softmax to approximate Pr(i|u, zM) efficiently. Hierarchical soft-
max was first introduced by Morin and Bengio [2005] for neural networks and recently
was widely used in deep learning [Mikolov et al. 2013a, 2013b]. The main advantage
of hierarchical softmax is that, in each training instance, instead of evaluating the pa-
rameters for all the children of zM, we only need to evaluate parameters for log |c(zM)|
nodes.

Adapting hierarchical softmax to our model is challenging since our hierarchical
category tree has multiple layers and applying hierarchical softmax to different layers
results in different performances. In our work, since the major computation cost comes
from the large number of apps, we adapt hierarchical softmax to the apps. Specifically,
we organize the apps under a subcategory using a binary tree. As shown in Figure 2,
we represent each app (black nodes) as a leaf node of the binary tree, and the leaf nodes

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:10 B. Liu et al.

are connected by internal nodes (white nodes). Let n(i, l) be the lth node on the path
from the root of the binary tree to i, and let L(i) be the length of this path, and then
n(i, 1) is the root and n(i, L(i)) = i. For each leaf node (i.e., an app), there exists a unique
path from the root to the node. Let n(i, l + 1) = left(n(i, l)) indicate that n(i, l + 1) is the
left child node of n(i, l) and we define a sign function as follows:

S(n(i, l + 1) = left(n(i, l))) :=
{

1 n(i, l + 1) on left,
−1 otherwise.

(13)

Let yu,n(i,l) be the affinity score between user u and node n(i, l), which is defined as

yu,n(i,l) = bn(i,l) + p�
u qn(i,l), (14)

where qn(i,l) ∈ R
K is the latent factor vector and bn(i,l) is the bias term for node n(i, l).

Intuitively, at each inner node n(i, l) in the hierarchical softmax binary tree, we assign
the probability of moving left as

Pr(u, n(i, l + 1) = left(n(i, l))) = σ
(
bn(i,l) + p�

u qn(i,l)
)
, (15)

where σ (x) is a sigmoid function defined as follows:

σ (x) = 1
1 + e−x . (16)

Accordingly, the probability of moving right is

Pr(u, n(i, l + 1) �= left(n(i, l))) = 1 − σ
(
bn(i,l) + p�

u qn(i,l)
)

= σ
(− (

bn(i,l) + p�
u qn(i,l)

))
.

(17)

Combing Equations (15) and (17), we can derive the probability of moving from node
n(i, l) to node n(i, l + 1) as

Pr(u, n(i, l) → n(i, l + 1)) = σ
(
S(n(i, l + 1) = left(n(i, l))) · (

bn(i,l) + p�
u qn(i,l)

))
. (18)

As a result, by using the path n(i, 1) → n(i, 2) · · · → n(i, L(i)) in the defined hier-
archical softmax binary tree, we approximate the probability Pr(i|u, zM) as follows:

Pr(i|u, zM) =
L(i)−1∏

l=1

Pr(u, n(i, l) → n(i, l + 1))

=
L(i)−1∏

l=1

σ
(
S(n(i, l + 1) = left(n(i, l))) · (

bn(i,l) + p�
u qn(i,l)

))
.

(19)

Note that, instead of computing the affinity scores for all the apps under subcategory
zM to get the probability distribution Pr(i|u, zM) as defined in Equation (12), we only
need to compute L(i) − 1 times in the order of log |c(zM)|. Also hierarchical softmax
does not increase the number of parameters to be estimated. Instead of estimating
parameters of |c(zM)| apps, we only need to estimate the parameters for |c(zM)| − 1
internal nodes.

Comments. The binary tree built for hierarchical softmax is meant for computation
efficiency purpose, which is different form the category tree � used for structural choice
modeling.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:11

4.2. Parameter Learning

After building the hierarchical softmax binary tree for each most outside subcategory
node zM in the category hierarchy, the unique structural path for user u to choose app
i is extended as

pathi = z0 → z1 · · · → zM → n(i, 1) · · · → n(i, L(i)).

We rewrite the log likelihood �(�) and get the following objective function:

O =
U∑

u=1

∑
i∈Du

L(i)−1∑
l=1

ln Pr(u, n(i, l) → n(i, l + 1))

+
U∑

u=1

∑
i∈Du

M∑
m=1

ln Pr(zm|u, zm−1) +
M∑

m=1∀z∈�

ln Pr(qzm|qzm−1 , σ
2I)

=
U∑

u=1

∑
i∈Du

L(i)−1∑
l=1

ln σ
(
S(n(i, l + 1) = left(n(i, l))) · yu,n(i,l)

)

+
U∑

u=1

∑
i∈Du

M∑
m=1

ln
exp

(
bzm + p�

u qzm

)∑
z′∈c(zm−1) exp

(
bz′ + p�

u qz′
)

+
M∑

m=1∀z∈�

lnN
(
qzm|qzm−1 , σ

2I
)
.

Note that here we have an updated set of parameters to estimate, namely, � =
{pu, qz, qn(i,l), bz, bn(i,l)}. Instead of estimating pi and bi for i ∈ I, we estimate that of
internal nodes n(i, l) in the hierarchical softmax binary trees.

We use the stochastic gradient ascent method to update the latent factor variables.
Stochastic gradient ascent (descent) has been widely used for many machine learning
tasks [Bottou 2010]. The main process involves randomly scanning training instances
and iteratively updating parameters. In each iteration, we randomly sample a user–
app adoption instance 〈u, i, pathi〉, and we maximize O(�) using the following update
rule for �:

� = � + ε · ∂O(�)
∂�

, (20)

where ε is a learning rate.
Specifically, given a user–app adoption instance 〈u, i, pathi〉, the gradient with respect

to pu is

∂O
∂pu

=
L(i)−1∑

l=1

∂ ln Pr(u, n(i, l) → n(i, l + 1))
∂pu

+
M∑

m=1

∂ ln Pr(zm|u, zm−1)
∂pu

=
L(i)−1∑

l=1

(
1l+1 − σ

(
yu,n(i,l)

)) · qn(i,l)

+
M∑

m=1

(
qzm −

∑
z′∈c(zm−1) exp

(
bz′ + p�

u qz′
) · qz′∑

z′∈c(zm−1) exp
(
bz′ + p�

u qz′
)

)
.

(21)

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:12 B. Liu et al.

Here, 1l+1 is an indicator function defined as

1l+1 :=
{

1 if n(i, l + 1) = left(n(i, l)),
0 otherwise.

(22)

Before moving to the internal nodes, let us define another indicator function 1z∈pathi

which is defined as

1z∈Pathi :=
{

1 if z is in pathi,

0 other siblings nodes.
(23)

Then, for each internal node z ∈ pathi and its siblings, we have the gradient with
respect to qz as

∂O
∂qz

=
L(z)∑
l=1

∂ ln Pr(z|u, π (z))
∂qz

+
M∑

m=1∀z∈�

∂ ln Pr
(
qzm|qzm−1 , σ

2I
)

∂qz

= 1z∈pathi
· pu − exp

(
bz + p�

u qz
) · pu∑

z′∈c(zm−1) exp
(
bz′ + p�

u qz′
)

− qz − qπ(z)

σ 2 −
∑

z′∈c(z)(qz − qz′)
σ 2 .

(24)

Moreover, we have the gradient with respect to bias bz as

∂O
∂bz

= 1z∈Pathi − exp
(
bz + p�

u qz
)∑

z′∈c(zm−1) exp
(
bz′ + p�

u qz′
) . (25)

Finally, for each node level l = {1, 2, . . . , L(i) − 1} in the hierarchical softmax binary
tree, we have the gradient with respect to qn(i,l) and bn(i,l) as

∂O
∂qn(i,l)

= (
1l+1 − σ

(
yu,n(i,l)

)) · pu (26)

∂O
∂bn(i,l)

= 1l+1 − σ
(
yu,n(i,l)

)
, (27)

where 1l+1 is the indicator function defined in Equation (22). With gradients with
respect to � = {pu, qz, qn(i,l), bz, bn(i,l)} being derived, we update � using stochastic gra-
dient ascent rule � = � + ε · ∂O(�)

∂�
. We summarize the parameter estimation procedure

in Algorithm 1.

4.3. Complexity Analysis

Note that in each iteration our SUCM has a linear time complexity O((
∑M

m=1 |Lm| +
log |c(zM)|) × |D|), where |D| is the number of user–app adoption observations in the
training dataset, |Lm| is the number of categories or subcategories in the category hier-
archy level m, and log |c(zM)| is the logarithm of the number of apps under the most out-
side subcategory zM, whose children nodes are apps. Therefore, the SUCM has the same
complexity as the widely used latent factor models, which are usually linear to the num-
ber of observations |D|. In most applications, value of (

∑M
m=1 |Lm| + log |c(zM)|) will not

be a large number. For example, in our app recommendation application with a dataset
collected from Google Play, the worst case of (

∑M
m=1 |Lm| + log |c(zM)|) is around 70.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:13

ALGORITHM 1: Structural User Choice Model Estimation
Input: category tree �, user–app adoption observations D = {(u, i)}, learning rate ε.
Output: optimal � = {pu, qz, qn(i,l), bz, bn(i,l)}
begin

for each most outside subcategory node zM do
build a binary tree for hierarchical softmax

end
Initialize �
repeat

sample a user–app adoption instance 〈u, i, pathi〉
// update user latent factor

pu ← pu + ε · ∂O
∂pu

(Equation (21))
// update internal node latent factor
for each internal node z ∈ pathi and its siblings do

qz ← qz + ε · ∂O(�)
∂qz

(Equation (24))

bz ← bz + ε · ∂O(�)
∂bz

(Equation (25))
end
// update hierarchical softmax binary tree node latent factor
for for each node level l = {1, . . . , L(i) − 1} do

qn(i,l) ← qn(i,l) + ε · ∂O(�)
∂qn(i,l)

(Equation (26))

bn(i,l) ← bn(i,l) + ε · ∂O(�)
∂bn(i,l)

(Equation (27))
end

until convergence or reach max iter
return �̂

end

5. EXPERIMENTS

This section presents an empirical evaluation of the performances of our model and
previous methods. All the experiments are performed on a large-scale real-world app
adoption dataset that we collected from Google Play.

5.1. Dataset Collection

The Google Play is a centralized marketplace where all apps are organized in a pre-
defined category tree. Apps are organized into 27 categories, and the category Games
is further divided into 18 subcategories. Also Google Play has both free and paid apps.
Users can review (i.e., rate or like) apps on Google Play. A user’s review about apps
he/she used are publicly available. Once we obtain the Google ID of a user, we can
locate all apps the user has reviewed. Therefore, we first obtained a list of Google user
IDs from the dataset shared from Gong et al. [2012] and wrote a crawler to collect the
list of apps that had been reviewed by these users. For each retrieved app, we crawled
its category and subcategory information from Google Play.

We treated a user having adopted an app if the review score, whose value is from one
to five, is greater or equal to three. After excluding users who have adopted less than
40 apps to avoid cold start problem, we obtained a dataset with 52,483 users, 26,426
apps, and 3,286,156 review observations. The resulting user–app adoption matrix has
a sparsity as high as 99.76% and each user adopts 62.61 apps on average, which is a
very small fraction of all the apps. Table II shows some basic statistics of our dataset.

Since only 11.11% of all the apps in our dataset are paid apps, we do not distin-
guish between paid and free apps when constructing the hierarchical category tree
�. The 26, 426 apps are categorized into 25 categories (the categories Live Wallpaper

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:14 B. Liu et al.

Table II. Data Description

#users #apps #observations sparsity
52,483 26,426 3,286,156 99.76%

Fig. 3. App distributions in the category hierarchy. (a) App distributions in app categories, and (b) app
distributions in Games subcategory.

and Widgets defined by Google Play do not appear in our dataset). Figure 3 shows
the detailed app distributions in different categories and the subcategories of Games.
We observe that game apps take the highest percentage, accounting for 26.85% of
all the apps; Arcade (20.46%), Puzzle (16.50%), and Casual (12.35%) are among the top
three subcategories in Games, accounting for 49.31% of all the game apps.

5.2. Compared Approaches

We compare our SUCM with the following recommendation models.

—Logistic Latent Factor Model (LLFM) [Agarwal and Chen 2009]. LLFM was designed
to model binary response using a cross-entropy loss function. In our problem, we
adapt LLFM to solve the following optimization problem:

arg min
P,Q,b

∑
u,i∈D

ln
(
1 + exp

(− (
p�

u qi + bi
))) + λU

∑
u∈U

||pu||22 + λI

∑
i∈I

||qi||22 + λb

∑
i∈I

b2
i ,

where parameters λU , λI, and λb are regularization weights for users, items, and
item bias, respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:15

—Probabilistic Matrix Factorization with negative samples (PMFNeg) [Salakhutdinov
and Mnih 2008]. PMF is a standard latent factor model that is widely used for
recommendations. We adapt PMF to our problem, i.e., we solve the following problem:

arg min
P,Q,b

∑
u,i∈D

(
yui − (

p�
u qi + bi

))2 + λU

∑
u∈U

||pu||2 + λI

∑
i∈I

||qi||2 + λb

∑
i∈I

b2
i .

However, we only have positive adopted instance (u, i) that is treated as yui = 1. Thus,
for each instance (u, i), we sample a certain number of negative instances {(u, j)} and
treat them as yuj = 0. We denote this modified PMF as PMFNeg. Note that PMFNeg
is similar to the sample-based one-class collaborative filtering methods [Pan et al.
2008; Hu et al. 2008].

—SVDFeature [Chen et al. 2012]. SVDFeature is a feature-based latent factor model for
recommendation settings with auxiliary information. We use category information
as the auxiliary information for SVDFeature.

—LibFM [Rendle 2010, 2012]. LibFM is a software implementation for factorization
machines (FM) [Rendle 2010] that models all interactions between variables (e.g.,
user, item, and auxiliary information). We also use category information as the aux-
iliary information and choose the two-way FM. One major difference between FM
and SVDFeature is that SVDFeature only considers the interactions between user
features and item features, whereas FM models all the interactions among all the
available information.

—Bayesian Personalized Ranking (BPR) [Rendle et al. 2009]. BPR was first proposed
to model personalized ranking with implicit feedback by treating observed user–
item pairs as positive instances and sampling some of the unseen user–item pairs
as negative instances. Given the preference triples D = {(u, i, j)|i
 j}, where i
 j
indicates user u prefers item i than item i, BPR aims at maximizing the following
optimization criterion:

arg max
P,Q,b

⎧⎨
⎩ln

∏
(u,i, j)∈D

Pr((u, i, j)|i
u j)Pr(�)

⎫⎬
⎭

= arg max
P,Q,b

⎧⎨
⎩ln

∏
(u,i, j)∈D

σ (yui − yuj |�)Pr(�)

⎫⎬
⎭ ,

where σ (·) is the sigmoid function σ (x) = 1
1+e−x , and Pr(�) are Gaussian priors for

the parameters.
—CCF [Yang et al. 2011]: Given an offer set, CCF models user–item choice behavior

by encoding a local competition effect to improve recommendation performances. For
each instance (u, i), we sample a certain number of negative instances to formu-
late the offer sets {(u, i,A(i)) as described in Yang et al. [2011]. Given collections of
choice decision-making records D = {(u, i,A(i))}, CCF estimates the latent factors
and the item bias terms by solving following optimization problem:

arg min
P,Q,b

⎧⎨
⎩ ∑

(u,i,A(i))∈D
ln

⎡
⎣ ∑

j∈A(i)

exp
(
p�

u q j + bj
)⎤⎦ − (

p�
u qi + bi

)

+λU

∑
u∈U

||pu||22 + λI

∑
i∈I

||qi||22 + λb

∑
i∈I

b2
i

}
.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:16 B. Liu et al.

Implementations, training, and testing. All models are implemented with a stochastic
gradient ascent/descent optimization method with an annealing procedure to discount
learning rate ε at the iteration nIter with εnIter = ε ν

ν+nIter−1 by setting ν = 50. The
learning rate ε and the regularization weights are set by cross validation. All param-
eters are initialized by a Gaussian distribution N (0, 0.1). We randomly sample 80% of
adopted apps of each user as the training dataset, and we use the remaining adopted
apps for testing.

5.3. Evaluation Metrics

In this implicit feedback app recommendation setting, we present each user with N
apps that have the highest predicted affinity values but are not adopted by the user
in the training phase, and we evaluate different approaches based on which of these
apps were actually adopted by the user in the test phase. More specifically, we adopt
a variety of widely used metrics to evaluate different approaches. In the following, we
elaborate each metric.

Precision and Recall Given a top-N recommendation list CN,rec, precision and recall
are defined as

Precision@N = |CN,rec
⋂

Cadopted|
N

Recall@N = |CN,rec
⋂

Cadopted|
|Cadopted| ,

(28)

where Cadopted are the apps that a user has adopted in the test data. The precision and
recall for the entire recommender system are computed by averaging the precision and
recall over all the users, respectively.

F-measure. F-measure balances between precision and recall. We consider the Fβ

metric, which is defined as

Fβ = (1 + β2) · Precision × Recall
β2 · Precision + Recall

, (29)

where β < 1 indicates more emphasis on precision than recall. In our experiments, we
use Fβ metric with β = 0.5.

Mean Average Precision. Average precision (AP) is a ranked precision metric that
gives larger credit to correctly recommended apps in higher positions. AP@N is defined
as the average of precisions computed at all positions with an adopted app, namely,

AP@N =
∑N

k=1 P(k) × rel(k)
min{N, |Cadopted|} , (30)

where P(k) is the precision at cut-off k in the top-N list CN,rec, and rel(k) is an indicator
function equaling 1 if the app at rank k is adopted, otherwise zero. Finally, mean
average precision (MAP@N) is defined as the mean of the AP scores for all users.

Normalized Discounted Cumulative Gain. NDCG is a ranked precision metric that
gives larger credit to correctly recommended apps in higher positions. Specifically, the
discounted cumulative gain (DCG) given a cut-off N is calculated by

DCGN =
N∑

i=1

2reli − 1
log2(i + 1)

, (31)

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:17

Fig. 4. Precision @N with different latent dimensions K.

Fig. 5. Recall @N with different latent dimensions K.

where reli is the relevance score, which is binary. Then, the NDCG@N is computed
as NDCG@N = DCGN

IDCGN
, where IDCGN is the DCGN value of the ideal ranking list. The

NDCG for the entire recommender system is computed by averaging the NDCG over
all the users.

5.4. Performance Comparisons

In this subsection, we present the performance comparisons on top-N performances be-
tween our proposed SUCM and the baseline methods. We compare various approaches
with three latent dimensions K = 20, K = 30, and K = 50, and four top-N values
N = 1, 3, 5, 10.

Figures 4, 5, and 6, respectively, show the precision@N, recall@N, and Fβ@N of all
compared approaches on our dataset. We find that our approach consistently and sub-
stantially outperforms the previous methods for different N and different K. Moreover,
we observe that negative sampling-based methods PMFNeg and BPR outperform LLFM
that considers only positive instances for all the three considered number of latent di-
mensions. This is because LLFM polarizes toward the positive response values, and
the learned recommendation model would predict positive for almost all unseen items
and yield poor ranking performances. However, PMFNeg and BPR mitigate the issue of
LLFM via sampling unseen items as negative instances. Although PMFNeg and BPR
achieve close performances for top-1 recommendations, BPR works slightly better than

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:18 B. Liu et al.

Fig. 6. F-measure Fβ@N with different latent dimensions K (β = 0.5).

Table III. MAP@N with Different Latent Dimensions K

K MAP LLFM PMFNeg SVDFeature LibFM BPR CCF SUCM

20

@1 15.69% 17.30% 17.69% 17.94% 17.61% 17.68% 20.69%
@3 10.38% 11.29% 11.72% 11.82% 11.64% 11.69% 13.40%
@5 8.17% 8.73% 9.00% 9.07% 8.95% 8.99% 10.11%
@10 5.49% 5.69% 5.85% 5.88% 5.84% 5.85% 6.40%

30

@1 14.99% 17.33% 17.83% 17.85% 17.73% 17.78% 20.66%
@3 10.07% 11.46% 11.71% 11.78% 11.72% 11.70% 13.23%
@5 7.97% 8.89% 9.01% 9.05% 9.00% 9.00% 9.97%
@10 5.38% 5.80% 5.85% 5.87% 5.86% 5.86% 6.33%

50

@1 14.41% 16.83% 17.71% 17.96% 17.63% 17.77% 20.40%
@3 9.71% 11.23% 11.74% 11.77% 11.67% 11.72% 13.25%
@5 7.71% 8.77% 9.01% 9.03% 8.94% 8.99% 10.05%
@10 5.25% 5.76% 5.84% 5.86% 5.84% 5.85% 6.36%

PMFNeg for top-3, top-5, and top-10 recommendations. Moreover, CCF further slightly
outperforms BPR in most cases. This is because CCF captures the local competition by
a softmax of the chosen item over the offer set. Our proposed SUCM further improves
upon CCF with significant margins for all the three evaluation metrics. For example,
SUCM improves upon CCF with around 3% in terms of top-1 precision.

Besides, previous work [Chen et al. 2012; Rendle 2010, 2012] showed that latent
factor-based recommendation could be improved by incorporating auxiliary information
such as item features and context information. However, we observe that, by treating
category information as auxiliary information, these methods (e.g., SVDFeature and
LibFM) can only gain marginal improvements in terms of top N recommendation per-
formances. Compared with counterpart method PMFNeg without auxiliary information,
SVDFeature can only gain around 0.4% improvement and LibFM can only gain around
0.6% improvement in terms of top-1 precision, respectively. We argue that category in-
formation, treated as auxiliary feature, is not fine grained enough to discriminate user
preferences. Quite differently, SUCM leverages the hierarchical structure of category
information to better profile user interest preferences.

Precision, recall, and F-measure do not consider the ranking positions of correctly
recommended apps. So we further adopt MAP and NDCG to provide more fine-grained
understanding of these recommendation approaches. Intuitively, MAP and NDCG give
larger credits to correctly recommended apps that are in higher ranking positions.
Tables III and IV, respectively, show the MAP@N and NDCG@N of all compared

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:19

Table IV. NDCG@N with Different Latent Dimensions K

K NDCG LLFM PMFNeg SVDFeature LibFM BPR CCF SUCM

20

@1 15.69% 17.30% 17.69% 17.94% 17.61% 17.68% 20.69%
@3 14.83% 15.96% 16.54% 16.64% 16.45% 16.52% 18.40%
@5 14.17% 14.94% 15.29% 15.36% 15.23% 15.28% 16.72%

@10 12.69% 12.99% 13.27% 13.30% 13.26% 13.26% 14.11%

30

@1 14.99% 17.33% 17.83% 17.85% 17.73% 17.78% 20.66%
@3 14.41% 16.00% 16.52% 16.59% 16.54% 16.52% 18.24%
@5 13.89% 15.04% 15.29% 15.34% 15.28% 15.30% 16.61%

@10 12.53% 13.10% 13.26% 13.29% 13.27% 13.28% 14.07%

50

@1 14.41% 16.83% 17.71% 17.96% 17.63% 17.77% 20.40%
@3 13.96% 15.87% 16.54% 16.58% 16.47% 16.52% 18.23%
@5 13.51% 14.96% 15.28% 15.33% 15.21% 15.26% 16.68%

@10 12.29% 13.08% 13.24% 13.27% 13.26% 13.25% 14.07%

approaches. Again, we observe consistent and substantial improvements of our SUCM
upon previous methods.

Summary. Through extensive evaluations, we found that our method SUCM con-
sistently and substantially outperforms previous methods in terms of a variety of
evaluation metrics. We argue that SUCM achieves this performance gain by learning
fine-grained user preferences via leveraging the hierarchical category tree of apps and
capturing the competitions between apps.

6. RELATED WORK

Our work is related to two research fields, personalized recommendation methodology
and mobile app recommendation.

Recommendation methodology. The most popular model-based approaches are based
on the latent factor models [Salakhutdinov and Mnih 2008; Koren et al. 2009; Agarwal
and Chen 2009; Wu et al. 2016]. For the binary implicit feedback setting, models
such as LLFM use cross-entropy loss [Agarwal and Chen 2009], but it is still apt to
obtain an estimator that would polarize toward the positive response values, thus
leading to limited top N performances. Negative sampling provides an alternative
by sampling a certain number of unseen items as negative samples. Then, standard
latent factor models such as PMF [Salakhutdinov and Mnih 2008] can be adopted.
Hu et al. [2008] proposed to treat implicit data as indication of positive and negative
preferences associated with vastly varying confidence levels on the objective function.
Pan et al. [2008] used a similar strategy by applying weighted low rank approximation.
Instead of optimizing point-wise loss function, BPR [Rendle et al. 2009] optimizes a
pairwise loss function to preserve the relative order of items for each user.

There are few works that adopt discrete choice models to model user–item choices
for recommendation [Yang et al. 2011] and for geographic ranking [Kumar et al. 2015].
Discrete choice models [Luce 1959; McFadden 1973] are built on established theories
on consumer preferences and utility and have been widely used for understanding
consumer behavior in different application domains, such as travel [Ben-Akiva and
Lerman 1985], transportation [Train 1978], and brand choice [Guadagni and Little
1983]. Based on a discrete choice model, Yang et al. [2011] proposed a CCF model to
learn user–item choice to improve recommendation performance. Given users’ interac-
tion with offer sets, CCF models user choice by a softmax function of the chosen item
over the offer set. In this sense, CCF can also be categorized into the sampling-based
method with samples given in the offer set. Though trying to model user choice pro-
cess, CCF does not consider the structural dependence between items to be chosen for
users; thus, the choice model in CCF is “flat” rather than structural. We extend the

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:20 B. Liu et al.

“flat” choice model into SUCM to capture fine-grained user preferences for mobile app
recommendation.

Recently, there are a few works to explore the item hierarchy and side information for
recommendation. For instance, Kanagal et al. [2012] and Ahmed et al. [2013] proposed
to learn user preferences with additional hierarchical item relationship and other side
information such as brand and temporal purchase sequence. Instead of using the prede-
fined item hierarchy, some other works also try to learn the item taxonomy [Zhang et al.
2014a]. However, these works did not consider the competitions among similar items or
among similar categories/subcategories. We do not compare our methods with them be-
cause they utilized more side information such as item brands and item semantics, but
it is an interesting future work for us to extend our framework to incorporate similar
side information in the domain of app recommendation. Besides, Ziegler et al. [2005]
utilized taxonomy information to balance and diversify personalized recommendation
lists. However, our work different from Ziegler et al. [2005] in both the purpose and the
way of utilizing taxonomy information.

Mobile app recommendation. Recently, app recommendation has drawn an increas-
ing number of attentions. Different from other domains such as movies [Bell and Koren
2007], musics [Aizenberg et al. 2012], and point-of-interests [Liu et al. 2013, 2015b],
app recommendation has its own characteristics. Yin et al. [2013] considered a tradeoff
between satisfaction and temptation for app recommendation with a special focus on
the case that a user would like to replace an old app with a new one. Similarly, [Lin
et al. 2014] and [Lin 2014] considered app versions to improve app recommendation by
incorporating features distilled from version descriptions. Karatzoglou et al. [2012] pro-
vided a context-aware recommendation using tensor factorization by including context
information such as location, moving status, and time. Woerndl et al. [2007] applied a
hybrid method for context-aware app recommendation. To address the cold-start prob-
lem for app recommendation, [Lin et al. 2013] and [Lin 2014] proposed to leverage
side information from Twitter. Specifically, information of followers of an app’s official
Twitter account is collected and utilized to model the app, providing an estimation
about which users may like the app. Davidsson et al. [2011] presented a context-based
recommender prototype for cold-start user users. Zhu et al. [2014] proposed a mobile
app ranking system by considering both the app’s popularity and security risks. More
recently, Liu et al. [2015a] studied personalized app recommendation by reconciling
user functionality preferences and user privacy preferences. Baeza-Yates et al. [2015]
proposed a method to predict which app a user is going to use by leveraging spatio-
temporal context features, and Park et al. [2015] proposed a method to improve the
accuracy of mobile app retrieval by jointly modeling app descriptions and user reviews
using topic model. However, these works are orthogonal to ours because they use other
auxiliary information such as app versions, app satisfaction and temptation, and app
privacy, whereas our work focuses on leveraging app taxonomy to model structural
user choices among competing apps.

7. CONCLUSION AND FUTURE WORK

In this article, we proposed a novel SUCM to learn fine-grained user preferences
via leveraging the tree hierarchy of apps and capturing competitions between apps
for app recommendation. Specifically, given all apps in a centralized mobile app
market organized as a category tree, we represented the structural user choice as
a unique choice path, starting from the root till the leaf node where user makes an
app adoption decision, over the category hierarchy. Then, we captured the structural
choice procedure by cascading user preferences over the choice path through a novel
probabilistic model. We also designed an efficient learning algorithm to estimate

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

Structural Analysis of User Choices for Mobile App Recommendation 17:21

the model parameters. Moreover, we collected a real-world large-scale user–app
adoption dataset from Google Play and used it to evaluate our method and various
previous methods. Our results demonstrated that our method achieved consistent and
substantial performance improvements over previous methods.

There are a few interesting future directions that are worth exploring. (1) Human-
induced taxonomies are usually noisy and incomplete, and they do no evolve with a
change in user demographics or product inventory. Zhang et al. [2014a] proposed a
probabilistic model that is able to automatically discover the taxonomies from online
shopping data. An interesting future work is to explore a unified model that could
jointly learn the taxonomy and the structural choice model. (2) There are plenty of
user reviews in the Google Play store. Several previous works [Zhang et al. 2014b;
Wu and Ester 2015; Chen et al. 2016] have shown that user reviews provide more
detailed information on why a user gives an item a specific rating. Integrating our
model with user reviews helps us better understand fine-grained user preferences.
(3) We are also interested in adapting our model to other domains in which items are
also hierarchically categorized.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to
improve the quality of the article.

REFERENCES

Deepak Agarwal and Bee-Chung Chen. 2009. Regression-based latent factor models. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09). 19–
28.

Amr Ahmed, Bhargav Kanagal, Sandeep Pandey, Vanja Josifovski, Lluis Garcia Pueyo, and Jeff Yuan. 2013.
Latent factor models with additive and hierarchically-smoothed user preferences. In Proceedings of the
6th ACM International Conference on Web Search and Data Mining (WSDM’13). 385–394.

Natalie Aizenberg, Yehuda Koren, and Oren Somekh. 2012. Build your own music recommender by modeling
internet radio streams. In Proceedings of the 21st International Conference on World Wide Web. 1–10.

Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. 2015. Predicting the next app that
you are going to use. In Proceedings of the 8th ACM International Conference on Web Search and Data
Mining (WSDM’15). 285–294.

Robert M. Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge. SIGKDD Explor. Newsl.
9, 2 (Dec. 2007), 75–79.

Moshe E. Ben-Akiva and Steven R. Lerman. 1985. Discrete Choice Analysis: Theory and Application to Travel
Demand. Vol. 9. MIT Press.

Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT 2010. 177–186.

Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. 2012. SVDFeature: A
toolkit for feature-based collaborative filtering. J. Mach. Learn. Res. 13, 1 (Dec. 2012), 3619–3622.

Xu Chen, Yongfeng Zhang, Tao Xu, and Zheng Qin. 2016. Learning to rank features for recommendation
over multiple categories. In Proceedings of the 39th International Acm SIGIR Conference on Research &
Development in Information Retrieval. ACM.

Christoffer Davidsson and Simon Moritz. 2011. Utilizing implicit feedback and context to recommend mobile
applications from first use. In Proceedings of the 2011 Workshop on Context-awareness in Retrieval and
Recommendation (CaRR’11). 19–22.

Neil Zhenqiang Gong, Wenchang Xu, Ling Huang, Prateek Mittal, Emil Stefanov, Vyas Sekar, and Dawn
Song. 2012. Evolution of social-attribute networks: Measurements, modeling, and implications using
google+. In Proceedings of the 2012 ACM Conference on Internet Measurement Conference. ACM, 131–
144.

Peter M. Guadagni and John D. C. Little. 1983. A logit model of brand choice calibrated on scanner data.
Mark. Sci. 2, 3 (1983), 203–238.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In
Proceedings of 8th IEEE International Conference on Data Mining, (ICDM’08). 263–272.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

17:22 B. Liu et al.

Bhargav Kanagal, Amr Ahmed, Sandeep Pandey, Vanja Josifovski, Jeff Yuan, and Lluis Garcia-Pueyo. 2012.
Supercharging recommender systems using taxonomies for learning user purchase behavior. Proc. VLDB
Endow. 5, 10 (June 2012), 956–967.

Alexandros Karatzoglou, Linas Baltrunas, Karen Church, and Matthias Böhmer. 2012. Climbing the app
wall: Enabling mobile app discovery through context-aware recommendations. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management (CIKM’12). 2527–2530.

Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’08). 426–434.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender
systems. Computer 42, 8 (Aug. 2009), 30–37.

Ravi Kumar, Mohammad Mahdian, Bo Pang, Andrew Tomkins, and Sergei Vassilvitskii. 2015. Driven by
food: Modeling geographic choice. In Proceedings of the 8th ACM International Conference on Web Search
and Data Mining (WSDM’15). 213–222.

Jovian Lin. 2014. Mobile App Recommendation. Ph.D. Dissertation. National University of Singapore.
Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua. 2013. Addressing cold-start in app

recommendation: Latent user models constructed from Twitter followers. In Proceedings of the 36th
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’13).
283–292.

Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua. 2014. New and improved: Modeling ver-
sions to improve app recommendation. In Proceedings of the 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’14). 647–656.

Bin Liu, Yanjie Fu, Zijun Yao, and Hui Xiong. 2013. Learning geographical preferences for point-of-interest
recommendation. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’13). 1043–1051.

Bin Liu, Deguang Kong, Lei Cen, Neil Zhenqiang Gong, Hongxia Jin, and Hui Xiong. 2015a. Personalized
mobile app recommendation: Reconciling app functionality and user privacy preference. In Proceedings
of the 8th International Conference on Web Search and Data Mining (WSDM’15). 315–324.

Bin Liu, Hui Xiong, Spiros Papadimitriou, Yanjie Fu, and Zijun Yao. 2015b. A general geographical proba-
bilistic factor model for point of interest recommendation. IEEE Trans. Knowl. Data Eng. 27, 5 (2015),
1167–1179.

R. Duncan Luce. 1959. Individual Choice Behavior: A Theoretical Analysis. Wiley.
Charles F. Manski. 1977. The structure of random utility models. Theory Decis. 8, 3 (1977), 229–254.
Daniel McFadden. 1973. Conditional logit analysis of qualitative choice behavior. In Frontiers in Economet-

rics, P. Zarembka (Ed.). Academic Press, New-York.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representa-

tions in vector space. arXiv:1301.3781 (2013).
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013b. Distributed representations

of words and phrases and their compositionality. In Proceedings of Advances in Neural Information
Processing Systems. 3111–3119.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural network language model. In
Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. 246–252.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan Lukose, Martin Scholz, and Qiang Yang. 2008.
One-class collaborative filtering. In Proceedings of 8th IEEE International Conference on Data Mining
(ICDM’08). 502–511.

Dae Hoon Park, Mengwen Liu, ChengXiang Zhai, and Haohong Wang. 2015. Leveraging user reviews to im-
prove accuracy for mobile app retrieval. In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’15). 533–542.

Steffen Rendle. 2010. Factorization machines. In Proceedings of IEEE 10th International Conference on Data
Mining (ICDM). IEEE, 995–1000.

Steffen Rendle. 2012. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3, 3, Article 57
(May 2012), 22 pages. DOI:http://dx.doi.org/10.1145/2168752.2168771

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian
personalized ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in
Artificial Intelligence (UAI’09). 452–461.

Ruslan Salakhutdinov and Andriy Mnih. 2008. Probabilistic matrix factorization. In Proceedings of Neural
Information Processing Systems (NIPS), Vol. 20.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

http://dx.doi.org/10.1145/2168752.2168771

Structural Analysis of User Choices for Mobile App Recommendation 17:23

Kenneth Train. 1978. A validation test of a disaggregate mode choice model. Transp. Res. 12, 3 (1978),
167–174.

Wolfgang Woerndl, Christian Schueller, and Rolf Wojtech. 2007. A hybrid recommender system for context-
aware recommendations of mobile applications. In Proceedings of IEEE 23rd International Conference
on Data Engineering Workshop, 2007. IEEE, 871–878.

Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders
for top-n recommender systems. In Proceedings of the 9th ACM International Conference on Web Search
and Data Mining (WSDM’16). 153–162.

Yao Wu and Martin Ester. 2015. FLAME: A probabilistic model combining aspect based opinion mining and
collaborative filtering. In Proceedings of the 8th ACM International Conference on Web Search and Data
Mining (WSDM’15). ACM, 199–208.

Shuang-Hong Yang, Bo Long, Alexander J. Smola, Hongyuan Zha, and Zhaohui Zheng. 2011. Collaborative
competitive filtering: Learning recommender using context of user choice. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’11).
295–304.

Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. 2013. App recommendation: A contest between
satisfaction and temptation. In Proceedings of the 6th ACM International Conference on Web Search and
Data Mining (WSDM’13). 395–404.

Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. 2014a. Taxonomy discovery for per-
sonalized recommendation. In Proceedings of the 7th International Conference on Web Search and Data
Mining (WSDM’14). 243–252.

Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. 2014b. Explicit factor
models for explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the
37th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,
83–92.

Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. 2014. Mobile app recommendation with security and
privacy awareness. In Proceedings of the 20th ACM International Conference on Knowledge Discovery
and Data Mining (KDD’14).

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving recommen-
dation lists through topic diversification. In Proceedings of the 14th International Conference on World
Wide Web (WWW’05). 22–32.

Received August 2015; revised May 2016; accepted August 2016

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 17, Publication date: November 2016.

