
Efficient Approximate Top-k Query Algorithm Using

Cube Index

Dongqu Chen, Guang-Zhong Sun
1
, Neil Zhenqiang Gong

2

Key Laboratory on High Performance Computing, Anhui Province

School of Computer Science and Technology

University of Science and Technology of China

cdq2012@mail.ustc.edu.cn, gzsun@ustc.edu.cn, neilz.gong@berkeley.edu

Abstract. Exact top-k query processing has caught much attention recently

because of its wide use in many research areas. Since missing the truly best

answers is inherent and unavoidable due to the user’s subjective judgment, and

the cost of processing exact top-k queries is highly expensive for datasets with

huge volume, it is intriguing to answer approximate top-k query instead. In this

paper, we define a novel kind of approximate top-k query, called -

approximation top-k query, and introduce an efficient indexing structure, cube

index, to support this query. Based on cube index, we propose our novel

algorithm: Cube Index Algorithm (CIA). We analyze the complexity of both

setting up -cube index and CIA algorithm. Moreover, extensive experiments

show that the CIA has significant improvement on the performance, compared

with the well-known approximate top-k query algorithm, TA algorithm.

Keywords: Database query processing, Algorithms, Indexes.

1 Introduction

Exact top-k query processing has gained more and more attention recently because

of its wide use in many fields, such as information retrieval, multimedia databases,

P2P and sensor networks, etc. The main reason for such attention is that top-k queries

avoid overwhelming the user with large numbers of uninteresting answers which are

resource-consuming.

However, two main reasons convince us to abandon exact top-k query processing.

First, the top-k query concept is heuristic anyway. Hardly any user is interested in all

the exact k answers of a top-k query. Instead, they may be only interested in one or

several relevant objects in the top-k (e.g. 500 or 2000) answers. So, due to the

subjective judgment of the user, missing the truly best answers is inherent and

unavoidable. This argument enlightens us to relax exact top-k query to approximate

top-k query. Second, the cost of processing exact top-k queries is highly expensive for

datasets with huge volume, and the size of datasets in practice is always quite huge.

So it’s intriguing to answer approximate top-k query instead of exact top-k query.

To solve the approximate top-k queries, Fagin propose the TA algorithm in [3]

based on the TA algorithm. Some papers have tried to reduce the cost of the query

while improving the precision of the answers. Based on TAθ, Theobald et al. [6]

introduced a scheme to associate probabilistic guarantees with approximate top-k

1Corresponding author
2Neil Z. Gong is now a postgraduate in EECS Department, UC Berkeley. This work was completed when
Neil Z. Gong was undergraduate student of USTC.

answers. In [8], Amato used a proximity measure to decide if a data region should be

inspected or not. Only data regions whose proximity to the query region is greater

than a specified threshold are accessed. This method is used to rank the nearest

neighbors to some target data object in an approximate manner. Approximate top-k

query processing has been also studied in peer-to-peer environments. The KLEE

system (Michel et al. [2]) addressed this problem, where distributed aggregation

queries are processed based on index lists located at isolated sites. KLEE assumes no

random accesses are made to index lists located at each peer. Message transfers

among peers are reduced by encoding messages into lightweight Bloom filters

representing data summaries.

In this paper, we define a novel approximation to the top-k answers, the -

approximation, and introduce an efficient indexing structure called cube index to

support such μ-approximation top-k query processing. Based on cube index, we

propose a novel algorithm: Cube Index Algorithm (i.e. CIA), an approximate top-k

query algorithm using cube index on the database, to solve this problem.

The rest of this paper is organized as follows: First, we define the computation

model formally and review the TAθ algorithm in Section 2. In Section 3, we describe

our method on setting up the cube index and then analyze its time complexity. Based

on these, we show our algorithm CIA and analyze its cost in Section 4. Thereafter, we

show the experimental results in Section 5. Finally, in Section 6, we conclude this

paper and introduce our future work.

2 Computation Model and TAθ Algorithm

In this section, we describe the model of top-k problem and review the TA

algorithm [3].

Our model of the dataset can be described as follows [3]: assume the database D

consists of n objects, which are denoted as x1, x2 … xn. Each object x is an m-

dimensional vector (s1(x), s2(x) … sm(x)), where si(x) is the ith local score of x as a real

number in the interval [0, 1]. For a given object x, x has a total score of f(x)= f(s1(x),

s2(x) … sm(x)), where the m-dimensional aggregate function f is supposed to be

increasingly monotonic:

Threshold Algorithm with θ-Approximation (TA)

Pre-computing Phase:

For each attribute i ∈ {1, 2 … m}, get every si(xj) where j ∈ {1, 2 … n} and insert

them into a sorted list Li. Sorted list means that objects in each list are sorted in

descending order by the si(xj) value.

Computing Phase:

1: Do sorted access in parallel to each of the m lists. As an object is seen through

sorted access in some list, do random access to the other lists to find all its

remaining local scores, and compute its overall score. Maintain a set Y containing

the k objects whose overall scores are the highest among all the objects seen so far.

2: For each list Li, let si be the last local score seen under sorted access in Li.

Define the threshold value τ to be τ = f (s1, s2… sm)..

3: Halt when θ∙Mk ≥ τ, where Mk = min{ f (x) | x ∈ Y}.

Fig. 1. Threshold Algorithm with θ-Approximation

Definition 2.1 Aggregate Monotone Function [3]. An aggregate function f is

monotone if f (a1, a2 … am) ≤ f (a1’, a2’ … am’), whenever ai ≤ ai’ for every i.

In this paper, we assume the aggregate function is weighted summation function,

1

() ()
m

i i

i

f x w s x

 , where si(x) ∈ [0, 1] and
1

1
m

i

i

w

 (wi ≠ 0). Our task is to determine

the top-k objects, that is, k objects with the highest total scores. For approximate top-k

query, Fagin et al. [3] defined a θ-approximation to the top-k answers:

Definition 2.2 -Approximation [3]. Let Y be a collection of k objects such that for

each y among Y and each z not among Y, there are θf(y) ≥ f(z), where θ >1. Then Y is

one of the top-k answers with -approximation and θ is the relative approximation

coefficient.

To solve the θ-approximation top-k query, Fagin et al. [3] proposed the TAθ

algorithm, based on the threshold algorithm (i.e. TA). TAθ is described in Fig. 1.

3 Cube Index

Before proposing our algorithm, we first introduce an efficient indexing structure

called cube index to support such μ-approximation top-k query processing.

3.1 Description of Cube Index

We map the database to an m-dimensional hyperspace [0, 1]
m
; each object xj with

scores (s1(xj), s2(xj) …sm(xj)) in the database is mapped to an m-dimensional point pj =

(s1(xj), s2(xj) …sm(xj)) in [0, 1]
m
. We will not distinguish between object x and its

corresponding point p discussed below. Similarly, si(p) is the value of p’s ith

dimension and f(p) is p’s total score.

Now we define a -approximation to the top-k answers.

Definition 3.1 -Approximation. Let Y be a collection of k objects such that for

each y among Y and each z not among Y, there are f(y)+ ≥ f(z), where 0 < ≤ 1.

Then Y is one of the top-k answers with -approximation and is the proportional

approximation coefficient.

Definition 3.2 Dominate [7]. Point p1 dominates point p2 if and only if for each i ∈
{1, 2 … m}, si(p1) ≥ si(p2) and there exists at least one member j of {1, 2 … m}

satisfying sj(p1) > sj(p2).

Observation 3.1. If point p1 dominates point p2, then f(p1) > f(p2), where f is an

aggregate monotone function.

Proof. We can easily get the correctness of Observation 3.1 according to the

definitions of aggregate monotone function and dominate. □
Definition 3.3 Skyline [7]. The skyline of a dataset D is the set of points that are

not dominated by any point in D.

Definition 3.4 Bottom Point. The bottom point of a hypercube is the vertex whose

values of every dimension are all lowest in the hypercube.

For example, the bottom point of the 3-dimensional cube [0.2, 0.3] × [0.1, 0.2] ×
[0.5, 0.6] is (0.2, 0.1, 0.5).

Observation 3.2. All other points in a hypercube dominate the bottom point.

Proof. We can easily get the correctness of Observation 3.2 according to the

definitions of dominate and bottom point. □
Now we show the cube partition method on the m-dimensional hyperspace [0, 1]

m
,

which is described as follows:

Firstly, we set the length of the edge of each hypercube as μ, where μ ∈ [0, 1].

Then we divide the interval [0, 1] into several μ-segments from 1 to 0 until the rest is

shorter than μ. Each dimension is divided in this way so that the m-dimensional

hyperspace [0, 1]
m
 is partitioned into several hypercubes or sub-hyperspaces.

Thereafter, we classify all the points in database into several sets: Point pi belongs to

bpi’s associated point set Si if and only if pi is in the hypercube whose bottom point is

bpi.

We call this partition method the μ-cube partition.

Definition 3.5 Sky Point. For a μ-cube partition, the sky point is the point whose

values in every dimension are all 1 − μ, that is, the point (1 − μ, 1 − μ… 1 − μ).

Apparently, sky point is the very bottom point which dominates all the other

bottom points and the set {sky point} is the skyline of the set of bottom points.

Definition 3.6 Neighbor. Bottom point bp1 is a neighbor of bottom point bp2 if and

only if they satisfy 1 2

1

() ()
1

m
i i

i

s bp s bp

 .

Definition 3.7 Superior. Bottom point bp1 is a superior of bottom point bp2 if and

only if bp1 is a neighbor of bp2 and bp1 dominates bp2.

Definition 3.8 Inferior. Bottom point bp1 is an inferior of bottom point bp2 if and

only if bp1 is a neighbor of bp2 and bp1 is dominated by bp2.

Discussions on special cases:

1) For the points in the hypercube whose bottom point is the sky point belong to

the 0
th

 set S0.

2) The points on the intersecting hyperplane of several neighboring hypercubes

belong to the hypercube whose bottom point dominates the others’ bottom point.

3) The points coinciding with bpi belong to set Si.

4) If Si.size = 0 and i ≠ 0, then remove bpi from the set of bottom points.

Meanwhile, for each inferior inf of bpi, regard all the superiors of bpi as inf’s

superiors too; for each superior sup of bpi, regard all the inferiors of bpi as sup’s

inferiors too.

Definition 3.9 μ-Cube Index. For a μ-cube partition, the μ-cube index is an index

list or array whose entries are ids of the bottom points. Each bottom point bpi has its

associated point set Si as well as its superiors’ ids and inferiors’ ids.

3.2 Complexity Analysis of μ-Cube Indexing Method

Now we analyze the time complexity of the method on setting up the cube index,

which is done in the pre-computing phase.

According to the description, the most time-consuming calculations in a μ-cube

partition are to find the superiors and inferiors of each bottom point and to classify all

the points in database into their corresponding sets.

Actually, the superiors and inferiors of each bottom point bp can be determined by

the following two simple formulas:

1. For each i ∈ {1, 2 … m} and si(bp) ≠ 0, bottom point bp’ is one inferior of bp,

satisfying

a. si(bp’) = (si(bp)−)⋅H(si(bp)−), where H(x) is the Heaviside step function;

b. sj(bp’) = sj(bp) for each j ∈ {1, 2 … m} and j ≠ i.

2. Bottom point bp’ is one inferior of bp if and only if bp is one superior of bp’.

There are
1

m

 bottom points in total, so the time complexity to find the superiors

and inferiors of each bottom point is
1

m

O m

.

On the other hand, each point p in database belongs to set Si if and only if set Si’s

corresponding bottom point bpi satisfies that for each i ∈ {1, 2 … m},

a. si(bp) = 1 () 1 ()
(1) (1)

s p s pi iH

 if si(p) ≠ 1, where H(x) is the

Heaviside step function;

b. si(bp) = 1 − μ when si(p) = 1.

Similarly, there are n points in database, so the time complexity to classify all the

points in database into their corresponding sets is O(mn).

Therefore, the total time complexity in the pre-computing phase is

1
m

O m mn

.

4 The Cube Index Algorithm

4.1 Description of Cube Index Algorithm

Based on the μ-cube index, we now propose a novel algorithm to answer the -

approximation top-k query: the Cube Index Algorithm (i.e. CIA), which is described

by the pseudo-code in Fig. 2.

Here Selectively Add in the pseudo-code is a sub- method to improve the precision

of the algorithm qualitatively. It can be to add the points at random, or to add them

from the points in skyline of Si or others ways.

4.2 μ-Approximation of Cube Index Algorithm

To proof the -approximation of CIA, we first introduce three lemmas and a

corollary as follows.

Lemma 4.1. Set T is always the top-(T.size) answers to the set of bottom points.

Proof. (By mathematical induction) Basis: Set T = {sky point} is the top-1

answers to the set of bottom points. Actually, sky point dominates all the other bottom

points for the formula of μ-cube index and the definition of sky point. According to

Observation 3.1, the sky point is the top-1 in the set of bottom points.

Cube Index Algorithm (CIA)

Pre-computing Phase:

Execute the normalization then set up the μ-cube index on the database.

Computing Phase:

1: Y = ∅, CL = ∅, T = {sky point}, where Y is the result set while CL is the sorted

candidate list according to the total scores and T is a temp set.

2: if S0.size ≤ k then

3: add all points in S0 into Y

4: else

5: Selectively Add k points in S0 into Y.

6: bpi = sky point.

7: while (Y.size < k) do

8: for each inferior inf of bpi do

9: if inf has not been accessed before and all superiors of inf is among T then

10: Access inf and insert it into CL

11: else

12: Continue.

13: if CL.size > k − Y.size then

14: Only keep the first k − Y.size points in CL.

15: Let bpi be the bottom point with the highest score in CL and move it into T.

16: if Si.size ≤ k − Y.size then

17: add all points in Si into Y

18: else

19: Selectively Add k − Y.size points in Si into Y.

20: Return Y.

 Fig. 2. Cube Index Algorithm

Inductive step: Assume that set T is the top-j answers to the set of bottom points

now, then the bottom point bpi with the highest score in CL is the top-(j + 1) in the set

of bottom points and is supposed to be moved to set T from CL.

Actually, only the points in the CL now have the chance to be the top-(j + 1).

Otherwise, for a point bp which is not in CL or set T, either bp has been accessed

before or bp has at least one superior that is not in set T. In the first case, according to

the algorithm, CIA halts if and only if Y.size = k, so Y.size < k before the algorithm

halts. If bp has been accessed before and be removed from CL, then there exist at least

T.size+(k− Y.size)≥ T.size+1 = j + 1 points whose total scores are higher than bp so

that bp even has no chance to be one of the top-(j + 1) answers. In the other case,

according to the definition of superior and Observation 3.1, every superior sup of bp

satisfies f(sup) > f(bp), so once sup is not in the top-j answers, or set T, bp has no

chance to be one of the top-(j + 1) answers. Furthermore, for each point bp in CL,

where bp ≠ bpi, bp is impossible to be one of the top-(j + 1) answers because even bpi

is not in the top-j answers. Therefore, bpi is the top-(j + 1) in the set of bottom points.

Conclusion: When CIA halts, set T is the top-(T.size) answers to the set of bottom

points. □

Corollary 4.1. Bottom points are moved into set T in descending order of total

score.

Proof. From the proof of Lemma 4.1, we easily conclude that bottom points are

moved into set T in descending order of total score. □

Lemma 4.2. When CIA halts, there is at most one bottom point bpj in set T

satisfying Sj ⊈ Y, where bpj is the one with the lowest score in set T and for each bpi ∈

T and bpi ≠ bpj, Si ⊆ Y.

Proof. According to the algorithm, the sub-method Selectively Add is executed if

and only if Sj.size > k − Y.size. In this case, we Selectively Add k − Y.size points in Sj

into Y so that Sj ⊈ Y. Thus there would be Y.size = k once the Selectively Add has been

executed, where CIA halts. So the sub-method Selectively Add can be executed at

most once. For Corollary 4.1, bpj is the one with the lowest score in set T. However,

in the case that Si.size ≤ k − Y.size, we add the whole Si into set Y so that Si ⊆ Y.

Therefore, when CIA halts, there is at most one bottom point bpj in set T satisfying

Sj ⊈ Y, where bpj is the one with the lowest score in set T and for each bpi ∈ T and bpi

≠ bpj, Si ⊆ Y. □

Lemma 4.3. For point pi∈Si and point pj∈Sj, if f(bpi) ≥ f(bpj), then f(pi)+ ≥ f(pj).

Proof. According to the formula of μ-cube index and the definition of bottom

point, for each l ∈ {1, 2 … m}, there is sl(bpj) ≤ sl(pj) ≤ sl(bpj) + . Considering

1

() ()
m

l l

l

f x w s x

 , where sl(x) ∈ [0, 1] and
1

1
m

l

l

w

 , we have

1 1 1

() () () () ()
m m m

j j l l j l l j l j

l l l

f bp f p w s p w s p w f bp

for Observation 3.1 and Observation 3.2. We can also get f(bpi)≤f(pi) in the same way.

Therefore, f(pi)+ ≥ f(bpi) + ≥ f(bpj) + ≥ f(pj). □

Theorem 4.1. CIA based on μ-cube index finds the top-k answers with -

approximation.

Proof. According to the algorithm, if bpi ∉ T, any member of Si has no chance to

be added into set Y. That is, for each y ∈ Y and y ∈ Sy, there must be bpy ∈ T. And

from Lemma 4.1, we know that set T is the top-(T.size) answers to the set of bottom

points. For each point z ∉ Y and z ∈ Sz and for each y ∈ Y and y ∈ Sy, if bpz ∉ T, then

f(bpy) ≥ f(bpz), so f(y)+ ≥ f(z) for Lemma 4.3. In the other case, if bpz ∈ T, since z ∉

Y, meaning Sz ⊈ Y, bpz is the one with the lowest score in set T according to Lemma

4.2. So we also have f(bpy) ≥ f(bpz) and f(y)+ ≥ f(z).

Therefore, for each y among Y and each z not among Y, there is f(y)+ ≥ f(z). That

is, CIA based on μ-cube index finds the top-k answers with -approximation. □

4.3 Cost Analysis of Cube Index Algorithm

According to Fagin et al. [3], the cost of the top-k query is proportional to the

times of accessing or aggregating the objects. For the CIA, the cost is the number of

bottom points accessed in the query.

First, let bp be the last bottom point added into set T. Denote B1 = {sky point} +

{bp | bp is a bottom point which is accessed in the query} and B2 = T – {bp}.

According to Lemma 4.1 and Corollary 4.1, B2 is the top-(T.size − 1) answers to the

set of bottom points.

Theorem 4.2. The cost of the CIA is T.size – 2 + skyline(2B).size, where 2B is

the complementary set of B2.

Proof. We only need to show that B1 = B2 + skyline(2B). Actually, it can be

proved by apagoge.

Case 1: If there exists bp ∈ B2 + skyline(2B) but bp ∉ B1, then we know bp is not

the sky point.

sub-case 1: If bp ∈ B2, since B2 = T – {bp} ⇒ B2 ⊂ T, according to the algorithm,

bp has no chance to be added into set T if bp has not been accessed. So it will conflict

with the algorithm.

sub-case 2: If bp ∈ skyline(2B), then all the superiors of bp is in B2 because there

is no any point in 2B dominating bp according to the definition of skyline. However,

in CIA, all points whose all superiors are in T must be accessed before the CIA halts.

As B2 ⊂ T, bp must be accessed, which contradicts the assumption that bp ∉ B1.

Case 2: If there exists bp ∈ B1 but bp ∉ B2 + skyline(2B), then bp belongs to

neither B2 nor skyline(2B). The fact that bp ∉ B2 indicates bp is not in the top-(T.size

− 1) answers to the set of bottom points so bp is not the sky point because {sky point}

is the top-1 answers. Therefore, bp has chance to be accessed if and only if all the

superiors of bp are in B2 for the algorithm. However, bp ∉ skyline(2B), meaning that

bp has at least one superior that is not in T so bp cannot be accessed. Thus the

assumption has no chance to be true.

Therefore, B1 = B2 + skyline(2B). Besides, since skyline(2B) ⊆ 2B , B2 ⋂

skyline(2B) = ∅. So B1.size = B2.size + skyline(2B).size. Moreover, B2.size = T.size – 1

and the cost of the CIA is B1.size – 1, considering that the sky point is not accessed in

the algorithm.

Therefore, the cost of the CIA is B1.size – 1 = T.size – 1 + skyline(2B).size – 1 =

T.size – 2 + skyline(2B).size. □

5 Experiments

In this section, we conduct extensive experiments to evaluate the performance of

our algorithm. Our algorithm is implemented in C/C++ language. We perform our

experiments on an 8-CPU server with 8GB shared memory and each CPU is 4-core

Intel Xeon E5430 2.66GHz.

5.1 Turning μ-Approximation into - Approximation

According to the definitions of - approximation and -approximation, if set Y is

the top-k answers with -approximation, for each y among Y and each z not among Y,

there are f(y)+ ≥ f(z). So we have (1) () ()
()

f y f z
f y

 . Let f(y) be the kth highest

total score in set Y so that
() ()f y f y

 . Therefore, the relative approximation

coefficient
()f y

 , or = f(y)∙ .

In our experiments, we run the CIA over the databases to find the value of f(y) and

then the TA runs on -approximation of

()f y

 . We choose the -approximation

as the criterion of approximation to run our tests.

5.2 Evaluation Metrics

In our tests, the following measures are collected for efficiency comparison [6]:

accesses: the number of items accessed in the query without duplication;

precision: the fraction of top-k results in an approximate result that belongs to the

exact top-k result;

recall: the fraction of top-k results in the exact result that were returned by the

approximate top-k query;

rank distance: the footrule distance [14] between the ranks of the approximate

top-k results and their true ranks in the exact top-k result, i.e.,
1

1
()

k

i

i truerank i
k

 ,

where truerank(i) is the ith returned object’s true rank in the exact top-k result.

score error: the absolute error between approximate and exact top-k scores, i.e.,

() ()

1

1 k
approx exact

i i

i

totalscore totalscore
k

 ,

where scorei
(approx)

 is the total score of the ith object in the approximate top-k

result while scorei
(exact)

 is the total score of the ith object in the exact top-k result.

Because the precision and the recall have the same denominator k, they have

identical values in our setup. We regard the recall as a formal measure in our tests,

instead of precision.

5.3 Description of Datasets

We do experiments on two synthetic datasets. All generated local scores belong to

the interval [0, 1]. The two synthetic datasets are produced to model different input

scenarios. They are UI and NI respectively. UI contains datasets in which objects’

local scores are uniformly and independently generated for the different lists. NI

contains datasets in which objects’ local scores are normally and independently

generated for the different lists. For synthetic datasets, our default settings for

different parameters are shown in Table 1. As mentioned above, approximate top-k

queries are usually applied in the cases that the values of n is fairly large, which could

cause considerable cost and delays to return the exact query answers. Therefore, in

our tests, the default number of data items in each list is 1,000,000, i.e. n=1,000,000.

Typically, users are interested in a small number of top answers, thus we set k = 500

as the default value of k, which is a tiny value compared with n. We set m as 3 since

Table 1. Default values of experimental parameters.

Parameters Default Values

The number of objects, i.e. n 1,000,000

The number of lists, i.e. m 3

The number of results returned, i.e. k 500

The precision of results returned, i.e. 0.05

Aggregate function 0.2s1+0.3s2+0.5s3

most previous works evaluate their algorithms on datasets with 3 lists like [4]. Finally,

we set 0.05 as the default value of .

We run our tests with default precision (= 0.05) and high precision (= 0.005)

over each dataset respectively. Furthermore, we run the algorithms on the datasets

with large value of k (2000) to observe the effect of k on the performance.

For real datasets, we choose El Nino dataset
1
 and Forest Cover (FC) dataset

2
. El

Nino dataset contains 93935 objects and FC dataset contains 581012 objects. El Nino

contains oceanographic and surface meteorological readings taken from a series of

buoys positioned throughout the equatorial Pacific. The data is expected to aid in the

understanding and prediction of El Nino/Southern Oscillation (ENSO) cycles. FC

contains 581012 forest land cells (i.e. objects), having four attributes (i.e. lists):

horizontal distance to nearest surface water features, vertical distance to nearest

surface water features, horizontal distance to nearest roadways, and horizontal

distance to nearest wildfire ignition points. For both real datasets, we choose 3 lists

and normalize the dataset with the formula: ()is t Min

Max Min

, where si(t) is t’s ith local score.

5.4 Experimental Results

Fig. 3 illustrates the experimental results where all the parameters are set as

default values. Apparently, CIA has significant reduction on the number of accesses

over every dataset. Compared with the TA , CIA reduces more than 99% accesses

during the query process. Apart from this, CIA is also dominant on other evaluation

metrics, namely recall, rank distance and score error over every dataset but FC,

where CIA is a little inferior to TA on these aspects.

The experimental results shown in Fig. 4 when k = 2000 on each dataset are

similar to the results when all the parameters are set as default values. From the

results, we can see that CIA also has great reduction on the number of accesses

compared with the TA . In terms of the other aspects, CIA performs much better than

TA over every dataset except FC.

Fig. 5 shows us the experimental results where the parameters are set as default

values except that , the precision of results returned is 0.005. Obviously, CIA is

more efficient than TA considerably but is transcended in other measures. Therefore,

CIA has lower accuracy compared with TA but still keeps its efficiency in the

queries with high precision.

Summary: From all the experimental results, we know that CIA improves

significantly not only on the number of accesses, but also on other evaluation metrics

in the queries with default precision. In addition, we can also learn the fact that CIA

still keeps its efficiency and accuracy when the value of k is considerable large.

1From UCI KDD. http://kdd.ics.uci.edu/databases/el_nino/el_nino.html
2From UCI KDD. http://kdd.ics.uci.edu/databases/covertype/covertype.html

However, CIA is not dominant on all the evaluation metrics over some datasets, like

FC in our tests. Finally, in the queries with high precision, our algorithm is

considerably superior to TA on the number of accesses but have little advantage on

other respects.

Results for UI accesses recall rank distance score error

TA 10527 0.50200 281.78800 0.008390

CIA 7 0.75600 88.404000 0.002428

Results for NI accesses recall rank distance score error

TA 10703 0.52600 242.084000 0.007883

CIA 7 0.76800 88.180000 0.002601

Results for EI accesses recall rank distance score error

TA 1890 0.29200 702.208000 0.006722

CIA 2 0.66600 124.584000 0.001354

Results for FC accesses recall rank distance score error

TA 5031 0.99200 0.506000 0.000017

CIA 61 0.83800 35.214000 0.001281

Fig. 3. Performance of CIA vs. TA when k = 500 and = 0.05

Results for UI accesses recall rank distance score error

TA 28778 0.77900 232.320500 0.003214

CIA 24 0.83700 158.745000 0.001843

Results for NI accesses recall rank distance score error

TA 29375 0.80200 194.234000 0.002834

CIA 26 0.85100 136.511000 0.001665

Results for EI accesses recall rank distance score error

TA 4519 0.70300 463.897000 0.006876

CIA 4 0.94750 17.667000 0.000258

Results for FC accesses recall rank distance score error

TA 10084 0.94150 23.150500 0.000418

CIA 138 0.89650 75.043000 0.001175

Fig. 4. Performance of CIA vs. TA when k = 2000 and = 0.05

Results for UI accesses recall rank distance score error

TA 40683 0.99800 0.030000 0.000001

CIA 532 0.97400 1.112000 0.000031

Results for NI accesses recall rank distance score error

TA 40371 0.99999 0.000001 0.000001

CIA 539 0.97800 0.678000 0.000023

Results for EI accesses recall rank distance score error

TA 8941 0.99999 0.000001 0.000001

CIA 22 0.96200 2.200000 0.000023

Results forFC accesses recall rank distance score error

TA 10482 0.99999 0.000001 0.000001

CIA 552 0.97400 0.840000 0.000027

Fig. 5. Performance of CIA vs. TA when k = 500 and = 0.005

6. Conclusions and Future Work

In this paper, we analyzed the model of the top-k queries and gave some

observations. To measure the approximation of the top-k answers, we defined a novel

approximation, -approximation to the top-k answers. Then we introduce an efficient

indexing structure called -cube index to support this kind of approximate query.

Based on the -cube index on the dataset, we proposed our algorithm, the Cube Index

Algorithm to answer the -approximation top-k queries. The main advantage of CIA

is that we choose the bottom point of a hypercube to approximately represent the

points in the hypercube and run the algorithm to find the top-T.size in the set of

bottom points so that the number of accesses can be reduced significantly. Extensive

experimental results on both generated and real-world datasets show that our

algorithm owns higher accuracy with less cost, compared with TA .

In the future work, we plan to turn our algorithm into exact algorithm based on

the cube index ideas.

Acknowledgments. This work is supported by the National Science Foundation of

China under the grant [No. 60873210].

References

1. I. Ilyas, G. Beskales, M. A. Soliman: A Survey of Top-k Query Processing Techniques in

Relational Database Systems. ACM Computing Surveys, 2008.

2. S. Michel, P. Triantafillou, G. Weikum: KLEE: A frame work for distributed top-k query

algorithms. VLDB, 2005.

3. R. Fagin, A. Lotem M. Naor: Optimal aggregation algorithms for middleware. PODS,

2001.

4. Neil Z. Gong, G. Z. Sun: Parallel Algorithms for Top-k Query Processing. ACM

SIGMOD, 2010.

5. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms. MIT

Press, 2001.

6. M. Theobald, G. Weikum, R. Schenkel: Top-k Query Evaluation with Probabilistic

Guarantees. VLDB, 2004.

7. L.Zou, L.Chen: Dominant Graph An Efficient Indexing Structure to Answer Top-K

Queries. ICDE, 2008.

8. G. Amato, F. Rabitti, P. Savino, P. Zezula: Region Proximity in Metric Spaces and Its

Use For Approximate Similarity Search. ACM Trans. Inform. Syst, 2003.

9. D. Xin, J. Han, H. Cheng, and X. Li: Answering Top-k Queries with Multi-Dimensional

Selections: The Ranking Cube Approach. VLDB 2006.

10. R. Fagin, R. Kumar, D. Sivakumar: Comparing Top K Lists. ACM-SIAM SODA, 2003.

11. D. Donjerkovic. R. Ramakrishnan: Probabilistic Optimization of Top N Queries. VLDB

1999.

12. J. Hellerstein, P. Haas, H. Wang: Online Aggregation. ACM SIGMOD, 1997.

13. I. Ilyas, W. Aref, A. Elmagarmid: Supporting Top-K Join Queries in Relational Databases.

VLDB, 2004.

14. M. Kendall, J.D. Gibbons: Rank Correlation Methods. Oxford University Press, 1990.

15. C. Re, N. Dalvi, D. Suciu: Efficient Top-K Query Evaluation on Probabilistic Data. ICDE,

2007.

