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Abstract. Exact top-k query processing has caught much attention recently 

because of its wide use in many research areas. Since missing the truly best 

answers is inherent and unavoidable due to the user’s subjective judgment, and 

the cost of processing exact top-k queries is highly expensive for datasets with 

huge volume, it is intriguing to answer approximate top-k query instead. In this 

paper, we define a novel kind of approximate top-k query, called  -

approximation top-k query, and introduce an efficient indexing structure, cube 

index, to support this query. Based on cube index, we propose our novel 

algorithm: Cube Index Algorithm (CIA). We analyze the complexity of both 

setting up  -cube index and CIA algorithm. Moreover, extensive experiments 

show that the CIA has significant improvement on the performance, compared 

with the well-known approximate top-k query algorithm, TA algorithm.  

Keywords: Database query processing, Algorithms, Indexes. 

1   Introduction 

Exact top-k query processing has gained more and more attention recently because 

of its wide use in many fields, such as information retrieval, multimedia databases, 

P2P and sensor networks, etc. The main reason for such attention is that top-k queries 

avoid overwhelming the user with large numbers of uninteresting answers which are 

resource-consuming.  

However, two main reasons convince us to abandon exact top-k query processing. 

First, the top-k query concept is heuristic anyway. Hardly any user is interested in all 

the exact k answers of a top-k query. Instead, they may be only interested in one or 

several relevant objects in the top-k (e.g. 500 or 2000) answers. So, due to the 

subjective judgment of the user, missing the truly best answers is inherent and 

unavoidable. This argument enlightens us to relax exact top-k query to approximate 

top-k query. Second, the cost of processing exact top-k queries is highly expensive for 

datasets with huge volume, and the size of datasets in practice is always quite huge. 

So it’s intriguing to answer approximate top-k query instead of exact top-k query.  

To solve the approximate top-k queries, Fagin propose the TA  algorithm in [3] 

based on the TA algorithm. Some papers have tried to reduce the cost of the query 

while improving the precision of the answers. Based on TAθ, Theobald et al. [6] 

introduced a scheme to associate probabilistic guarantees with approximate top-k 
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answers. In [8], Amato used a proximity measure to decide if a data region should be 

inspected or not. Only data regions whose proximity to the query region is greater 

than a specified threshold are accessed. This method is used to rank the nearest 

neighbors to some target data object in an approximate manner. Approximate top-k 

query processing has been also studied in peer-to-peer environments. The KLEE 

system (Michel et al. [2]) addressed this problem, where distributed aggregation 

queries are processed based on index lists located at isolated sites. KLEE assumes no 

random accesses are made to index lists located at each peer. Message transfers 

among peers are reduced by encoding messages into lightweight Bloom filters 

representing data summaries. 

In this paper, we define a novel approximation to the top-k answers, the  -

approximation, and introduce an efficient indexing structure called cube index to 

support such μ-approximation top-k query processing. Based on cube index, we 

propose a novel algorithm: Cube Index Algorithm (i.e. CIA), an approximate top-k 

query algorithm using cube index on the database, to solve this problem.    

The rest of this paper is organized as follows: First, we define the computation 

model formally and review the TAθ algorithm in Section 2. In Section 3, we describe 

our method on setting up the cube index and then analyze its time complexity. Based 

on these, we show our algorithm CIA and analyze its cost in Section 4. Thereafter, we 

show the experimental results in Section 5. Finally, in Section 6, we conclude this 

paper and introduce our future work. 

2   Computation Model and TAθ Algorithm 

In this section, we describe the model of top-k problem and review the TA 

algorithm [3]. 

Our model of the dataset can be described as follows [3]: assume the database D 

consists of n objects, which are denoted as x1, x2 … xn. Each object x is an m-

dimensional vector (s1(x), s2(x) … sm(x)), where si(x) is the ith local score of x as a real 

number in the interval [0, 1]. For a given object x, x has a total score of f(x)= f(s1(x), 

s2(x) … sm(x)), where the m-dimensional aggregate function f is supposed to be 

increasingly monotonic: 

Threshold Algorithm with θ-Approximation (TA ) 

Pre-computing Phase: 

For each attribute i ∈ {1, 2 … m}, get every si(xj) where j ∈ {1, 2 … n} and insert 

them into a sorted list Li. Sorted list means that objects in each list are sorted in 

descending order by the si(xj) value. 

Computing Phase: 

1: Do sorted access in parallel to each of the m lists. As an object is seen through 

sorted access in some list, do random access to the other lists to find all its 

remaining local scores, and compute its overall score. Maintain a set Y containing 

the k objects whose overall scores are the highest among all the objects seen so far. 

2: For each list Li, let si be the last local score seen under sorted access in Li. 

Define the threshold value τ to be τ = f (s1, s2… sm).. 

3: Halt when θ∙Mk ≥ τ, where Mk = min{ f (x) | x ∈ Y}. 

Fig. 1.  Threshold Algorithm with θ-Approximation 



Definition 2.1 Aggregate Monotone Function [3]. An aggregate function f is 

monotone if f (a1, a2 … am) ≤ f (a1’, a2’ … am’), whenever ai ≤ ai’ for every i. 

In this paper, we assume the aggregate function is weighted summation function, 
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 , where si(x) ∈ [0, 1] and 
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  (wi ≠ 0). Our task is to determine 

the top-k objects, that is, k objects with the highest total scores. For approximate top-k 

query, Fagin et al. [3] defined a θ-approximation to the top-k answers:  

Definition 2.2  -Approximation [3]. Let Y be a collection of k objects such that for 

each y among Y and each z not among Y, there are θf(y) ≥ f(z), where θ >1. Then Y is 

one of the top-k answers with  -approximation and θ is the relative approximation 

coefficient. 

To solve the θ-approximation top-k query, Fagin et al. [3] proposed the TAθ 

algorithm, based on the threshold algorithm (i.e. TA). TAθ is described in Fig. 1. 

3   Cube Index 

Before proposing our algorithm, we first introduce an efficient indexing structure 

called cube index to support such μ-approximation top-k query processing. 

3.1   Description of Cube Index 

We map the database to an m-dimensional hyperspace [0, 1]
m
; each object xj with 

scores (s1(xj), s2(xj) …sm(xj)) in the database is mapped to an m-dimensional point pj = 

(s1(xj), s2(xj) …sm(xj)) in [0, 1]
m
. We will not distinguish between object x and its 

corresponding point p discussed below. Similarly, si(p) is the value of p’s ith 

dimension and f(p) is p’s total score. 

Now we define a  -approximation to the top-k answers.  

Definition 3.1  -Approximation. Let Y be a collection of k objects such that for 

each y among Y and each z not among Y, there are f(y)+  ≥ f(z), where 0 <   ≤ 1. 

Then Y is one of the top-k answers with  -approximation and   is the proportional 

approximation coefficient.  

Definition 3.2 Dominate [7]. Point p1 dominates point p2 if and only if for each i ∈ 
{1, 2 … m}, si(p1) ≥ si(p2) and there exists at least one member j of {1, 2 … m} 

satisfying sj(p1) > sj(p2).  

Observation 3.1. If point p1 dominates point p2, then f(p1) > f(p2), where f is an 

aggregate monotone function.  

Proof. We can easily get the correctness of Observation 3.1 according to the 

definitions of aggregate monotone function and dominate.          □ 
Definition 3.3 Skyline [7]. The skyline of a dataset D is the set of points that are 

not dominated by any point in D.  

Definition 3.4 Bottom Point. The bottom point of a hypercube is the vertex whose 

values of every dimension are all lowest in the hypercube.  

For example, the bottom point of the 3-dimensional cube [0.2, 0.3] × [0.1, 0.2] × 
[0.5, 0.6] is (0.2, 0.1, 0.5).  

Observation 3.2. All other points in a hypercube dominate the bottom point.  



Proof. We can easily get the correctness of Observation 3.2 according to the 

definitions of dominate and bottom point.           □ 
Now we show the cube partition method on the m-dimensional hyperspace [0, 1]

m
, 

which is described as follows:  

Firstly, we set the length of the edge of each hypercube as μ, where μ ∈ [0, 1]. 

Then we divide the interval [0, 1] into several μ-segments from 1 to 0 until the rest is 

shorter than μ. Each dimension is divided in this way so that the m-dimensional 

hyperspace [0, 1]
m
 is partitioned into several hypercubes or sub-hyperspaces. 

Thereafter, we classify all the points in database into several sets: Point pi belongs to 

bpi’s associated point set Si if and only if pi is in the hypercube whose bottom point is 

bpi.  

We call this partition method the μ-cube partition.  

Definition 3.5 Sky Point. For a μ-cube partition, the sky point is the point whose 

values in every dimension are all 1 − μ, that is, the point (1 −  μ, 1 −  μ… 1 −  μ).  

Apparently, sky point is the very bottom point which dominates all the other 

bottom points and the set {sky point} is the skyline of the set of bottom points.  

Definition 3.6 Neighbor. Bottom point bp1 is a neighbor of bottom point bp2 if and 

only if they satisfy 1 2
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Definition 3.7 Superior. Bottom point bp1 is a superior of bottom point bp2 if and 

only if bp1 is a neighbor of bp2 and bp1 dominates bp2.  

Definition 3.8 Inferior. Bottom point bp1 is an inferior of bottom point bp2 if and 

only if bp1 is a neighbor of bp2 and bp1 is dominated by bp2.  

Discussions on special cases: 

1) For the points in the hypercube whose bottom point is the sky point belong to 

the 0
th

 set S0.  

2) The points on the intersecting hyperplane of several neighboring hypercubes 

belong to the hypercube whose bottom point dominates the others’ bottom point.  

3) The points coinciding with bpi belong to set Si.  

4) If Si.size = 0 and i ≠ 0, then remove bpi from the set of bottom points. 

Meanwhile, for each inferior inf of bpi, regard all the superiors of bpi as inf’s 

superiors too; for each superior sup of bpi, regard all the inferiors of bpi as sup’s 

inferiors too. 

Definition 3.9 μ-Cube Index. For a μ-cube partition, the μ-cube index is an index 

list or array whose entries are ids of the bottom points. Each bottom point bpi has its 

associated point set Si as well as its superiors’ ids and inferiors’ ids. 

3.2   Complexity Analysis of μ-Cube Indexing Method 

Now we analyze the time complexity of the method on setting up the cube index, 

which is done in the pre-computing phase.  

According to the description, the most time-consuming calculations in a μ-cube 

partition are to find the superiors and inferiors of each bottom point and to classify all 

the points in database into their corresponding sets.  

Actually, the superiors and inferiors of each bottom point bp can be determined by 



the following two simple formulas: 

1. For each i ∈ {1, 2 … m} and si(bp) ≠ 0, bottom point bp’ is one inferior of bp, 

satisfying  

a. si(bp’) = (si(bp)− )⋅H(si(bp)− ), where H(x) is the Heaviside step function; 

b. sj(bp’) = sj(bp) for each j ∈ {1, 2 … m} and j ≠ i. 

2. Bottom point bp’ is one inferior of bp if and only if bp is one superior of bp’.  

There are 
1

m



 
 
 

 bottom points in total, so the time complexity to find the superiors 

and inferiors of each bottom point is 
1

m

O m


  
     

.  

On the other hand, each point p in database belongs to set Si if and only if set Si’s 

corresponding bottom point bpi satisfies that for each i ∈ {1, 2 … m},  

a. si(bp) = 1 ( ) 1 ( )
(1 ) (1 )

s p s pi iH 
 

    
       
   

 if si(p) ≠ 1, where H(x) is the 

Heaviside step function; 

b. si(bp) = 1 −  μ when si(p) = 1.  

Similarly, there are n points in database, so the time complexity to classify all the 

points in database into their corresponding sets is O(mn).  

Therefore, the total time complexity in the pre-computing phase is 

1
m

O m mn


  
     

  

. 

4   The Cube Index Algorithm 

4.1   Description of Cube Index Algorithm 

Based on the μ-cube index, we now propose a novel algorithm to answer the  -

approximation top-k query: the Cube Index Algorithm (i.e. CIA), which is described 

by the pseudo-code in Fig. 2. 

Here Selectively Add in the pseudo-code is a sub- method to improve the precision 

of the algorithm qualitatively. It can be to add the points at random, or to add them 

from the points in skyline of Si or others ways.  

4.2   μ-Approximation of Cube Index Algorithm 

To proof the  -approximation of CIA, we first introduce three lemmas and a 

corollary as follows. 

Lemma 4.1. Set T is always the top-(T.size) answers to the set of bottom points. 

Proof. (By mathematical induction) Basis: Set T = {sky point} is the top-1 

answers to the set of bottom points. Actually, sky point dominates all the other bottom 

points for the formula of μ-cube index and the definition of sky point. According to 

Observation 3.1, the sky point is the top-1 in the set of bottom points. 



Cube Index Algorithm (CIA) 

Pre-computing Phase: 

Execute the normalization then set up the μ-cube index on the database. 

Computing Phase: 

1: Y = ∅, CL = ∅, T = {sky point}, where Y is the result set while CL is the sorted 

candidate list according to the total scores and T is a temp set.  

2: if S0.size ≤ k then 

3:    add all points in S0 into Y 

4: else 

5:    Selectively Add k points in S0 into Y. 

6: bpi = sky point. 

7: while (Y.size < k) do 

8:    for each inferior inf of bpi do 

9:       if inf has not been accessed before and all superiors of inf is among T then 

10:     Access inf and insert it into CL 

11:     else 

12:     Continue. 

13:   if CL.size > k −  Y.size then 

14:     Only keep the first k −  Y.size points in CL. 

15:   Let bpi be the bottom point with the highest score in CL and move it into T. 

16:   if Si.size ≤ k − Y.size then 

17:     add all points in Si into Y 

18:   else 

19:     Selectively Add k − Y.size points in Si into Y. 

20: Return Y. 

 Fig. 2.  Cube Index Algorithm 

Inductive step: Assume that set T is the top-j answers to the set of bottom points  

now, then the bottom point bpi with the highest score in CL is the top-(j + 1) in the set 

of bottom points and is supposed to be moved to set T from CL. 

Actually, only the points in the CL now have the chance to be the top-(j + 1). 

Otherwise, for a point bp which is not in CL or set T, either bp has been accessed 

before or bp has at least one superior that is not in set T. In the first case, according to 

the algorithm, CIA halts if and only if Y.size = k, so Y.size < k before the algorithm 

halts. If bp has been accessed before and be removed from CL, then there exist at least 

T.size+(k− Y.size)≥ T.size+1 = j + 1 points whose total scores are higher than bp so 

that bp even has no chance to be one of the top-(j + 1) answers. In the other case, 

according to the definition of superior and Observation 3.1, every superior sup of bp 

satisfies f(sup) > f(bp), so once sup is not in the top-j answers, or set T, bp has no 

chance to be one of the top-(j + 1) answers. Furthermore, for each point bp in CL, 

where bp ≠ bpi, bp is impossible to be one of the top-(j + 1) answers because even bpi 

is not in the top-j answers. Therefore, bpi is the top-(j + 1) in the set of bottom points. 

Conclusion: When CIA halts, set T is the top-(T.size) answers to the set of bottom 

points.              □ 

Corollary 4.1. Bottom points are moved into set T in descending order of total 

score. 



Proof. From the proof of Lemma 4.1, we easily conclude that bottom points are 

moved into set T in descending order of total score.         □ 

Lemma 4.2. When CIA halts, there is at most one bottom point bpj in set T 

satisfying Sj ⊈ Y, where bpj is the one with the lowest score in set T and for each bpi ∈ 

T and bpi ≠ bpj, Si ⊆ Y. 

Proof. According to the algorithm, the sub-method Selectively Add is executed if 

and only if Sj.size > k − Y.size. In this case, we Selectively Add k − Y.size points in Sj 

into Y so that Sj ⊈ Y. Thus there would be Y.size = k once the Selectively Add has been 

executed, where CIA halts. So the sub-method Selectively Add can be executed at 

most once. For Corollary 4.1, bpj is the one with the lowest score in set T. However, 

in the case that Si.size ≤ k − Y.size, we add the whole Si into set Y so that Si ⊆ Y.  

Therefore, when CIA halts, there is at most one bottom point bpj in set T satisfying 

Sj ⊈ Y, where bpj is the one with the lowest score in set T and for each bpi ∈ T and bpi 

≠ bpj, Si ⊆ Y.                □ 

Lemma 4.3. For point pi∈Si and point pj∈Sj, if f(bpi) ≥ f(bpj), then f(pi)+  ≥ f(pj). 

Proof. According to the formula of μ-cube index and the definition of bottom 

point, for each l ∈ {1, 2 … m}, there is sl(bpj) ≤ sl(pj) ≤ sl(bpj) + . Considering 
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for Observation 3.1 and Observation 3.2. We can also get f(bpi)≤f(pi) in the same way.  

Therefore, f(pi)+  ≥ f(bpi) +  ≥ f(bpj) +  ≥ f(pj).       □ 

Theorem 4.1. CIA based on μ-cube index finds the top-k answers with  -

approximation. 

Proof. According to the algorithm, if bpi ∉ T, any member of Si has no chance to 

be added into set Y. That is, for each y ∈ Y and y ∈ Sy, there must be bpy ∈ T. And 

from Lemma 4.1, we know that set T is the top-(T.size) answers to the set of bottom 

points. For each point z ∉ Y and z ∈ Sz and for each y ∈ Y and y ∈ Sy, if bpz ∉ T, then 

f(bpy) ≥ f(bpz), so f(y)+  ≥ f(z) for Lemma 4.3. In the other case, if bpz ∈ T, since z ∉ 

Y, meaning Sz ⊈ Y, bpz is the one with the lowest score in set T according to Lemma 

4.2. So we also have f(bpy) ≥ f(bpz) and f(y)+  ≥ f(z).  

Therefore, for each y among Y and each z not among Y, there is f(y)+  ≥ f(z). That 

is, CIA based on μ-cube index finds the top-k answers with  -approximation.     □ 

4.3   Cost Analysis of Cube Index Algorithm 

According to Fagin et al. [3], the cost of the top-k query is proportional to the 

times of accessing or aggregating the objects. For the CIA, the cost is the number of 

bottom points accessed in the query.  

First, let bp be the last bottom point added into set T. Denote B1 = {sky point} + 

{bp | bp is a bottom point which is accessed in the query} and B2 = T – {bp}. 

According to Lemma 4.1 and Corollary 4.1, B2 is the top-(T.size − 1) answers to the 

set of bottom points.  



Theorem 4.2. The cost of the CIA is T.size – 2 + skyline( 2B ).size, where 2B  is 

the complementary set of B2. 

Proof. We only need to show that B1 = B2 + skyline( 2B ). Actually, it can be 

proved by apagoge. 

Case 1: If there exists bp ∈ B2 + skyline( 2B ) but bp ∉ B1, then we know bp is not 

the sky point. 

sub-case 1: If bp ∈ B2, since B2 = T – {bp} ⇒ B2 ⊂ T, according to the algorithm, 

bp has no chance to be added into set T if bp has not been accessed. So it will conflict 

with the algorithm.  

sub-case 2: If bp ∈ skyline( 2B ), then all the superiors of bp is in B2 because there 

is no any point in 2B  dominating bp according to the definition of skyline. However, 

in CIA, all points whose all superiors are in T must be accessed before the CIA halts. 

As B2 ⊂ T, bp must be accessed, which contradicts the assumption that bp ∉ B1.  

Case 2: If there exists bp ∈ B1 but bp ∉ B2 + skyline( 2B ), then bp belongs to 

neither B2 nor skyline( 2B ). The fact that bp ∉ B2 indicates bp is not in the top-(T.size 

− 1) answers to the set of bottom points so bp is not the sky point because {sky point} 

is the top-1 answers. Therefore, bp has chance to be accessed if and only if all the 

superiors of bp are in B2 for the algorithm. However, bp ∉ skyline( 2B ), meaning that 

bp has at least one superior that is not in T so bp cannot be accessed. Thus the 

assumption has no chance to be true.  

Therefore, B1 = B2 + skyline( 2B ). Besides, since skyline( 2B ) ⊆ 2B , B2 ⋂ 

skyline( 2B ) = ∅. So B1.size = B2.size + skyline( 2B ).size. Moreover, B2.size = T.size – 1 

and the cost of the CIA is B1.size – 1, considering that the sky point is not accessed in 

the algorithm. 

Therefore, the cost of the CIA is B1.size – 1 = T.size – 1 + skyline( 2B ).size – 1 = 

T.size – 2 + skyline( 2B ).size.           □ 

5   Experiments 

In this section, we conduct extensive experiments to evaluate the performance of 

our algorithm. Our algorithm is implemented in C/C++ language. We perform our 

experiments on an 8-CPU server with 8GB shared memory and each CPU is 4-core 

Intel Xeon E5430 2.66GHz.  

5.1 Turning μ-Approximation into   - Approximation 

According to the definitions of  - approximation and  -approximation, if set Y is 

the top-k answers with  -approximation, for each y among Y and each z not among Y, 

there are f(y)+  ≥ f(z). So we have (1 ) ( ) ( )
( )

f y f z
f y


  . Let f(y) be the kth highest 



total score in set Y so that 
( ) ( )f y f y

 
 . Therefore, the relative approximation 

coefficient 
( )f y


  , or   = f(y)∙  . 

In our experiments, we run the CIA over the databases to find the value of f(y) and 

then the TA  runs on  -approximation of

 
( )f y


  . We choose the   -approximation 

as the criterion of approximation to run our tests. 

5.2 Evaluation Metrics 

In our tests, the following measures are collected for efficiency comparison [6]: 

accesses: the number of items accessed in the query without duplication; 

precision: the fraction of top-k results in an approximate result that belongs to the 

exact top-k result; 

recall: the fraction of top-k results in the exact result that were returned by the 

approximate top-k query; 

rank distance: the footrule distance [14] between the ranks of the approximate 

top-k results and their true ranks in the exact top-k result, i.e., 
1

1
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 , 

where truerank(i) is the ith returned object’s true rank in the exact top-k result.  

score error: the absolute error between approximate and exact top-k scores, i.e.,  

( ) ( )
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where scorei
(approx)

 is the total score of the ith object in the approximate top-k 

result while scorei
(exact)

 is the total score of the ith object in the exact top-k result.  

Because the precision and the recall have the same denominator k, they have 

identical values in our setup. We regard the recall as a formal measure in our tests, 

instead of precision.  

5.3 Description of Datasets 

We do experiments on two synthetic datasets. All generated local scores belong to 

the interval [0, 1]. The two synthetic datasets are produced to model different input 

scenarios. They are UI and NI respectively. UI contains datasets in which objects’ 

local scores are uniformly and independently generated for the different lists. NI 

contains datasets in which objects’ local scores are normally and independently 

generated for the different lists. For synthetic datasets, our default settings for 

different parameters are shown in Table 1. As mentioned above, approximate top-k 

queries are usually applied in the cases that the values of n is fairly large, which could 

cause considerable cost and delays to return the exact query answers. Therefore, in 

our tests, the default number of data items in each list is 1,000,000, i.e. n=1,000,000. 

Typically, users are interested in a small number of top answers, thus we set k = 500 

as the default value of k, which is a tiny value compared with n. We set m as 3 since  



Table 1. Default values of experimental parameters. 

Parameters Default Values 

The number of objects, i.e. n 1,000,000 

The number of lists, i.e. m 3 

The number of results returned, i.e. k 500 

The precision of results returned, i.e.   0.05 

Aggregate function 0.2s1+0.3s2+0.5s3 

most previous works evaluate their algorithms on datasets with 3 lists like [4]. Finally, 

we set 0.05 as the default value of  . 

We run our tests with default precision (  = 0.05) and high precision (  = 0.005) 

over each dataset respectively. Furthermore, we run the algorithms on the datasets 

with large value of k (2000) to observe the effect of k on the performance. 

For real datasets, we choose El Nino dataset
1
 and Forest Cover (FC) dataset

2
. El 

Nino dataset contains 93935 objects and FC dataset contains 581012 objects. El Nino 

contains oceanographic and surface meteorological readings taken from a series of 

buoys positioned throughout the equatorial Pacific. The data is expected to aid in the 

understanding and prediction of El Nino/Southern Oscillation (ENSO) cycles. FC 

contains 581012 forest land cells (i.e. objects), having four attributes (i.e. lists): 

horizontal distance to nearest surface water features, vertical distance to nearest 

surface water features, horizontal distance to nearest roadways, and horizontal 

distance to nearest wildfire ignition points. For both real datasets, we choose 3 lists 

and normalize the dataset with the formula: ( )is t Min

Max Min




, where si(t) is t’s ith local score. 

5.4 Experimental Results 

Fig. 3 illustrates the experimental results where all the parameters are set as 

default values. Apparently, CIA has significant reduction on the number of accesses 

over every dataset. Compared with the TA , CIA reduces more than 99% accesses 

during the query process. Apart from this, CIA is also dominant on other evaluation 

metrics, namely recall, rank distance and score error over every dataset but FC, 

where CIA is a little inferior to TA  on these aspects. 

The experimental results shown in Fig. 4 when k = 2000 on each dataset are 

similar to the results when all the parameters are set as default values. From the 

results, we can see that CIA also has great reduction on the number of accesses 

compared with the TA . In terms of the other aspects, CIA performs much better than 

TA  over every dataset except FC.  

Fig. 5 shows us the experimental results where the parameters are set as default 

values except that  , the precision of results returned is 0.005. Obviously, CIA is 

more efficient than TA  considerably but is transcended in other measures. Therefore, 

CIA has lower accuracy compared with TA  but still keeps its efficiency in the 

queries with high precision. 

Summary: From all the experimental results, we know that CIA improves 

significantly not only on the number of accesses, but also on other evaluation metrics 

in the queries with default precision. In addition, we can also learn the fact that CIA 

still keeps its efficiency and accuracy when the value of k is considerable large. 

1From UCI KDD. http://kdd.ics.uci.edu/databases/el_nino/el_nino.html 
2From UCI KDD. http://kdd.ics.uci.edu/databases/covertype/covertype.html 



However, CIA is not dominant on all the evaluation metrics over some datasets, like 

FC in our tests. Finally, in the queries with high precision, our algorithm is 

considerably superior to TA  on the number of accesses but have little advantage on 

other respects. 

Results for UI accesses recall rank distance score error 

TA  10527 0.50200 281.78800 0.008390 

CIA 7 0.75600 88.404000 0.002428 

Results for NI accesses recall rank distance score error 

TA  10703 0.52600 242.084000 0.007883 

CIA 7 0.76800 88.180000 0.002601 

Results for EI accesses recall rank distance score error 

TA  1890 0.29200 702.208000 0.006722 

CIA 2 0.66600 124.584000 0.001354 

Results for FC accesses recall rank distance score error 

TA  5031 0.99200 0.506000 0.000017 

CIA 61 0.83800 35.214000 0.001281 

Fig. 3. Performance of CIA vs. TA  when k = 500 and   = 0.05 

Results for UI accesses recall rank distance score error 

TA  28778 0.77900 232.320500 0.003214 

CIA 24 0.83700 158.745000 0.001843 

Results for NI accesses recall rank distance score error 

TA  29375 0.80200 194.234000 0.002834 

CIA 26 0.85100 136.511000 0.001665 

Results for EI accesses recall rank distance score error 

TA  4519 0.70300 463.897000 0.006876 

CIA 4 0.94750 17.667000 0.000258 

Results for FC accesses recall rank distance score error 

TA  10084 0.94150 23.150500 0.000418 

CIA 138 0.89650 75.043000 0.001175 

Fig. 4. Performance of CIA vs. TA  when k = 2000 and   = 0.05 

Results for UI accesses recall rank distance score error 

TA  40683 0.99800 0.030000 0.000001 

CIA 532 0.97400 1.112000 0.000031 

Results for NI accesses recall rank distance score error 

TA  40371 0.99999 0.000001 0.000001 

CIA 539 0.97800 0.678000 0.000023 

Results for EI accesses recall rank distance score error 

TA  8941 0.99999 0.000001 0.000001 

CIA 22 0.96200 2.200000 0.000023 

Results forFC accesses recall rank distance score error 

TA  10482 0.99999 0.000001 0.000001 

CIA 552 0.97400 0.840000 0.000027 

Fig. 5. Performance of CIA vs. TA  when k = 500 and   = 0.005 



6. Conclusions and Future Work 

In this paper, we analyzed the model of the top-k queries and gave some 

observations. To measure the approximation of the top-k answers, we defined a novel 

approximation,  -approximation to the top-k answers. Then we introduce an efficient 

indexing structure called  -cube index to support this kind of approximate query. 

Based on the  -cube index on the dataset, we proposed our algorithm, the Cube Index 

Algorithm to answer the  -approximation top-k queries. The main advantage of CIA 

is that we choose the bottom point of a hypercube to approximately represent the 

points in the hypercube and run the algorithm to find the top-T.size in the set of 

bottom points so that the number of accesses can be reduced significantly. Extensive 

experimental results on both generated and real-world datasets show that our 

algorithm owns higher accuracy with less cost, compared with TA .  

In the future work, we plan to turn our algorithm into exact algorithm based on 

the cube index ideas. 
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