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Abstract—Estimating frequencies of certain items among a
population is a basic step in data analytics, which enables more
advanced data analytics (e.g., heavy hitter identification, frequent
pattern mining), client software optimization, and detecting
unwanted or malicious hijacking of user settings in browsers.
Frequency estimation and heavy hitter identification with local
differential privacy (LDP) protect user privacy as well as the
data collector. Existing LDP algorithms cannot leverage 1) prior
knowledge about the noise in the estimated item frequencies and
2) prior knowledge about the true item frequencies. As a result,
they achieve suboptimal performance in practice.

In this work, we aim to design LDP algorithms that can
leverage such prior knowledge. Specifically, we design Calibrate
to incorporate the prior knowledge via statistical inference.
Calibrate can be appended to an existing LDP algorithm to
reduce its estimation errors. We model the prior knowledge about
the noise and the true item frequencies as two probability distri-
butions, respectively. Given the two probability distributions and
an estimated frequency of an item produced by an existing LDP
algorithm, our Calibrate computes the conditional probability
distribution of the item’s frequency and uses the mean of the
conditional probability distribution as the calibrated frequency
for the item. It is challenging to estimate the two probability
distributions due to data sparsity. We address the challenge via
integrating techniques from statistics and machine learning. Our
empirical results on two real-world datasets show that Calibrate
significantly outperforms state-of-the-art LDP algorithms for
frequency estimation and heavy hitter identification.

I. INTRODUCTION

In frequency estimation, a data collector aims to estimate
the frequencies of certain items among a population, where
frequency of an item is the number of users that have the
item. Frequency estimation is a basic research problem in data
analytics and networking services. For instance, Google may
be interested in estimating how many users set a particular
webpage as the default homepage of Chrome [27], where
Google is the data collector and each webpage is an item;
and an app developer may be interested in estimating how
many users adopt a certain feature of the app, where the app
developer is the data collector and each feature of the app
is an item. Such frequency estimation is often the first step to
perform more advanced data analytics, optimize client software
(e.g., web services, mobile apps), and detect unwanted or
malicious hijacking of user settings in browsers [27]. For
instance, after estimating item frequencies, the data collector
can identify the items whose frequencies are larger than a given
threshold, which is called heavy hitter identification.

A naive solution for frequency estimation or heavy hitter
identification is to ask each user to share its item or set of
items with the data collector, who can compute the items’
frequencies easily. However, this naive solution faces two
challenges. First, when the items are sensitive, users may not
be willing to share their raw items with the data collector.
Second, the data collector could be vulnerable to insider
attacks and could be compromised to leak the users’ items,
which frequently happens in real world, e.g., Equifax was
recently compromised and personal data of 143 million users
were leaked [16].

Local differential privacy (LDP) [27], [5], [20], [22], [30],
[3], [12], [13], [34], [29], [23], [8], [24], [14], [6], [28],
[32], [35], [1], a privacy protection mechanism based on ε-
differential privacy [15], can address both challenges. Several
algorithms [27], [5], [20], [22], [30], [3], [12] for frequency
estimation with LDP have been proposed recently. Moreover,
LDP was deployed by Google Chrome [27], Apple [3], Mi-
crosoft [12], and Uber [26]. In fact, LDP is the first privacy
mechanism that was widely deployed in industry. These LDP
algorithms essentially consist of three steps, i.e., Encode,
Perturb, and Aggregate [30]. Encode and Perturb are
executed at client side for each user, while Aggregate is
executed at the data collector side. Encode translates a user’s
item into a number or vector; Perturb perturbs a user’s
encoded number or vector to preserve LDP, and sends the
perturbed value to the data collector; Aggregate estimates
item frequencies using the perturbed values from all users.

However, existing LDP algorithms have two key limita-
tions. Specifically, the estimated frequency of an item produced
by the Aggregate step is the sum of the true item frequency
and some noise. First, existing LDP algorithms do not leverage
the prior knowledge about the noise to filter them. Second, in
many scenarios, the data collector could have prior knowledge
about the true item frequencies, but existing LDP algorithms
cannot leverage such prior knowledge. For instance, many real-
world phenomena such as video popularity, webpage click
frequency, node degrees in social networks–follow power-law
distributions [9], [10], [18]; human height follows a Gaussian
distribution [2]. In a hybrid LDP setting [4], some opt-in users
share their true items with the data collector, who could obtain
prior knowledge about the distribution of the true item frequen-
cies from such opt-in users. Moreover, hypothesis testing with
LDP [17] can also help to determine the distribution family of
the true item frequencies. Due to these two limitations, existing
LDP algorithms achieve suboptimal performance.
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Fig. 1: Our statistical inference framework.

Our work: In this work, we aim to address the two limitations
of existing LDP algorithms. Towards this goal, we propose a
Calibrate step, which incorporates the prior knowledge about
the noise and the true item frequencies via statistical inference.
Our Calibrate step can be appended to the Aggregate step to
reduce the noise and increase accuracies for an existing LDP
algorithm. Figure 1 illustrates existing LDP algorithms and our
Calibrate step. We model the prior knowledge about the noise
and the true item frequencies as probability distributions ps
and pf , respectively. The two probability distributions mean
that, if we sample an item uniformly at random, then 1)
the item’s estimated frequency produced by an existing LDP
algorithm has a noise δ with a probability ps(δ), and 2) the
item’s true frequency is k with a probability pf (k). Given
the two probability distributions and the estimated frequency
of an item produced by a certain LDP algorithm, we compute
the conditional probability distribution of the item’s frequency,
and we use the mean of the conditional probability distribution
as a calibrated frequency for the item. We theoretically show
that, under the same conditions (i.e., given the two probability
distributions and an estimated item frequency), our Calibrate
is the optimal estimator to refine the item frequency.

Implementing our Calibrate step faces two challenges.
First, how to estimate the probability distribution ps of the
noise? Second, how to estimate the probability distribution pf
of the true item frequencies. To address the first challenge, we
theoretically show that, for state-of-the-art LDP algorithms,
the noise follows a Gaussian distribution with mean 0 and a
known variance. To address the second challenge, we consider
the data collector knows the distribution family that pf belongs
to. A distribution family is a group of probability distributions
that have similar properties, e.g., power-law distribution is a
distribution family that we would observe in many real-world
phenomena. A distribution family is parameterized by certain
parameters, e.g., a power-law distribution is parameterized by
an exponent. We design a mean-variance method to estimate
the parameters in the probability distribution pf efficiently.

We perform extensive experiments on two real-world
datasets to evaluate our Calibrate step and compare it with
state-of-the-art LDP algorithms for frequency estimation and
heavy hitter identification. Our results demonstrate that once
we append our Calibrate step to an existing LDP algorithm,
we can increase accuracies significantly.

In summary, our contributions are as follows:

• We propose a statistical inference framework called
Calibrate to incorporate prior knowledge about 1)
noise in the estimated item frequencies and 2) true
item frequencies. Our Calibrate can be appended to
an existing LDP algorithm to improve accuracies.

• We design methods to estimate the probability distri-
butions that model such prior knowledge.

• We perform extensive experiments on two real-world
datasets to evaluate Calibrate. Our results show that
Calibrate significantly outperforms state-of-the-art
LDP algorithms for frequency estimation and heavy
hitter identification.

II. BACKGROUND AND RELATED WORK

A. Frequency Estimation and Heavy Hitter Identification

Frequency estimation: Suppose we have d items (denoted
as {1, 2, · · · , d}) and n users. Each user has an item.1 A data
collector aims to compute the frequency fi of each item among
the n users, i.e., fi is the number of users that have the item
i. For instance, an item is Yes or No when the data collector
is interested in estimating the number of users that are HIV
positive and negative in a survey; an item is a webpage when
the data collector (e.g., Google) aims to estimate the number
of users that set a particular webpage as a browser’s default
homepage; an item is a feature of a mobile app when the data
collector (e.g., the app developer) aims to estimate the number
of users that use each feature.

Heavy hitter identification: A direct application of frequency
estimation is heavy hitter identification. Specifically, given a
threshold, heavy hitter identification aims to detect the items
whose frequencies are larger than the threshold. Heavy hitter
identification is a basic research problem in data analytics
with many applications, such as trend monitoring, marketing
analysis, and anomaly detection.

B. Local Differential Privacy Algorithms

The first local differential privacy (LDP) algorithm for
frequency estimation called randomized response dates back
to 1960s [33]. Recently, several LDP algorithms for frequency
estimation [27], [20], [22], [30], [3], [12] were proposed, e.g.,
RAPPOR [27], k-RR [20], and Optimized Unary Encoding
(OUE) [30]. An existing LDP algorithm A essentially consists
of three functions, i.e., A = (Encode, Perturb,Aggregate).
Figure 1 illustrates the three key functions for frequency
estimation with LDP. The Encode function encodes a user’s
item into a numerical value or a vector; the Perturb function
perturbs a user’s encoded value or vector such that local
differential privacy is achieved; the Aggregate function es-
timates item frequencies from the perturbed encoded values or
vectors from all users. The Encode and Perturb functions are
performed at client side for every user, while the Aggregate
function is executed at the data collector side. For simplicity,
we denote Perturb(Encode(i)) as PE(i), where i is an item.

Roughly speaking, in LDP, any two items have close
probabilities to be mapped to the same perturbed numerical
value or vector. Moreover, state-of-the-art LDP algorithms
(e.g., basic RAPPOR [27], k-RR [20], and OUE [30]) achieve
pure local differential privacy [30], which is formally defined
as follows:

1Our techniques can also be applied to the scenarios where each user has
a set of items.



Definition 1 (Pure Local Differential Privacy). A random-
ized algorithm A = (Encode, Perturb,Aggregate) achieves
pure local differential privacy if and only if there exists two
probability values p∗ and q∗ such that for all item i.

Pr[PE(i)) ∈ {t|i ∈ Support(t)}] = p∗, (1)
∀j 6=iPr[PE(j) ∈ {t|i ∈ Support(t)}] = q∗, (2)

where Support(t) is the set of items that a perturbed numer-
ical value or vector t supports.

For any pure LDP algorithm, the data collector can use
the following equation to estimate item frequencies in the
Aggregate function [30]:

f̂i =

∑
u 1Support(tu)(i)− nq∗

p∗ − q∗ , (3)

where f̂i is the estimated frequency for item i, tu is
the perturbed encoded output of user u, and the function
1Support(tu)(i) is 1 if tu supports the item i, otherwise it
is 0. Intuitively, for every perturbed encoded output from
users, we add one count to the items that are supported by
the output. In the end, we normalize the counts using the
probabilities p∗ and q∗. Different pure LDP algorithms use
different Encode and/or Perturb functions, and thus they
have different Support functions, p∗, and q∗.

Next, we use a state-of-the-art pure LDP algorithm called
OUE [30] as an example to illustrate the three functions.
OUE is an optimized version of the basic RAPPOR algorithm
proposed by Erlingsson et. al. [27].

Encode: OUE uses unary encoding to encode an item.
Specifically, OUE uses a length-d binary vector X to encode
the d items. If a user has item i, then X[i] = 1 and all other
entries of X are 0.

Perturb: In this step, OUE perturbs a binary vector X
into another binary vector Y probabilistically bit by bit.
Specifically, we have:

Pr(Y[i] = 1) =





p =
1

2
, if X[i] = 1

q =
1

1 + eε
, if X[i] = 0

(4)

If a bit in X is 1, then the corresponding bit in Y will be
1 with a probability 1

2 . However, if a bit in X is 0, then the
corresponding bit in Y will be 1 with a probability 1

1+eε , where
ε is the privacy budget.

Aggregate: Once the data collector receives the perturbed
binary vectors Y from users, the data collector estimates the
frequency f̂i of item i using Equation 3 with the function
1Support(tu)(i) = Yu[i], p∗ = p, and q∗ = q, where Yu is the
perturbed binary vector from user u.

After estimating the item frequencies, we can identify
heavy hitters. We note that some studies [19], [5], [22], [6],
[31] designed LDP algorithms to identify top-k heavy hitters,
which are the k items that have the largest frequencies. How-
ever, such algorithms cannot identify threshold-based heavy
hitters, because they do not consider the item frequencies.

C. Evaluation Metrics

Frequency estimation: Since a LDP algorithm is a ran-
domized algorithm, the estimated frequency f̂i is a random
variable, which means that every time the data collector
executes the LDP algorithm, the estimated frequency f̂i could
be different. Therefore, like previous studies [30], [27], [5],
[20], we use the mean square error (MSE) of the random
variable f̂i to measure error of a LDP algorithm at estimating
the frequency of item i. Specifically, the MSE for item i
is defined as MSE(f̂i, fi) = E(f̂i − fi)

2, where fi is the
true frequency of item i, E represents expectation, and the
expectation is taken with respect to the probability distribution
of f̂i. Note that if f̂i is an unbiased estimator, which means
that its expectation equals fi, then the MSE for item i is the
variance of the random variable f̂i. Moreover, the estimation
error of a LDP algorithm A is defined as the average MSE
of estimating frequencies of the d items. Formally, estimation
error of an algorithm A is computed as follows:

Estimation Error of A =
1

d

d∑

i=1

MSE(f̂i, fi). (5)

Heavy hitter identification: Given a threshold, we define an
item as a True (False) Positive if the item has a true frequency
larger (smaller) than the threshold and is estimated to have a
frequency larger than the threshold. We also define an item as
a False Negative if the item has a true frequency larger than
the threshold but is estimated to have a frequency smaller than
the threshold. We use standard metrics in information retrieval
to measure the quality of heavy hitter identification:

Precision =
True Positive

True Positive + False Positive
(6)

Recall =
True Positive

True Positive + False Negative
(7)

F-Score =
2 · Precision · Recall
Precision + Recall

(8)

III. OUR Calibrate FRAMEWORK

Existing LDP algorithms consist of three steps Encode,
Perturb, and Aggregate. Our Calibrate can be appended to
an existing LDP algorithm as the fourth step.

A. Overview of Calibrate

Formulating Calibrate as an optimization problem: Sup-
pose we have an LDP algorithm A. The data collector esti-
mates the frequency of an item i to be f̂i via executing the
algorithm. f̂i is a sum of the true frequency fi of the item i
and a noise. Specifically, we split the estimated frequency f̂i
as follows:

f̂i = fi + si, i ∈ {1, 2, · · · , d}, (9)

where si is a noise. We model the noise as a random variable
s, whose probability distribution is denoted as ps. We view the
d noise s1, s2, · · · , sd as random samples from the probability
distribution ps. We model the true item frequency as a random
variable f , whose probability distribution is denoted as pf .
We view the d true item frequencies f1, f2, · · · , fd as random



samples from the probability distribution pf . We model the
estimated item frequency as a random variable f̂ , whose
probability distribution is denoted as pf̂ . We view the d

estimated item frequencies f̂1, f̂2, · · · , f̂d as random samples
from the probability distribution pf̂ . Specifically, if we sample
an item i uniformly at random from the d items, then the item
has a true frequency of k with a probability of pf (f = k),
the item has an estimated frequency of k̂ with a probability of
pf̂ (f̂ = k̂), and the noise has a value of δ with a probability
of ps(s = δ).

The probability distributions ps and pf model the prior
knowledge about the noise and the true item frequencies,
respectively. For instance, as we will demonstrate in Sec-
tion III-B, for pure LDP algorithms, ps can be well approx-
imated as a Gaussian distribution with a known mean and
variance; for many application domains (e.g., video popu-
larity, webpage click frequency, and node degrees in social
networks [9], [10]), pf can be parameterized as a power-
law distribution, though the parameters in the power-law
distribution have to be estimated from the observed estimated
item frequencies f̂1, f̂2, · · · , f̂d.

Given Equation 9, we model the relationships between the
random variables s, f , and f̂ as f̂ = f + s. In other words,
we model frequency estimation with LDP as a probabilistic
generative process: for a randomly sampled item, the item’s
true item frequency is sampled from the probability distribution
pf , a noise is sampled from the probability distribution ps, and
an existing LDP algorithm estimates the item’s frequency as
the sum of the true frequency and the noise.

In the probabilistic generative process, we observe an
item’s estimated frequency produced by an existing LDP
algorithm. Our Calibrate step aims to “reverse” the generative
process to find the true item frequency. Specifically, given a
frequency estimation f̂i and the three probability distributions
ps, pf , and pf̂ , our Calibrate step aims to produce a calibrated
frequency estimation f̃i, such that the MSE is minimized.
More formally, we aim to obtain f̃i via solving the following
optimization problem:

f̃i = argmin
f ′

E((f ′ − f)2|f̂ = f̂i)

subject to: f̂i = f + s,

f ∝ pf ,

s ∝ ps, (10)

where the expectation is taken with respect to the random
variable f conditioned on that the estimated item frequency
is f̂ = f̂i, f ∝ pf means that f is a random variable whose
probability distribution is pf , and s ∝ ps means that s is a
random variable whose probability distribution is ps.

Conditional expectation as an optimal solution to the
optimization problem: Given the estimated item frequency
f̂i and the probability distributions ps, pf , and pf̂ , we can
compute a conditional probability distribution of the random
variable f , which models the knowledge we have about the
true frequency of item i after observing the estimated item
frequency f̂i. Specifically, according to the Bayes’ rule [25],

we have:

Pr(f = k|f̂ = f̂i) =
Pr(f = k, f̂ = f̂i)

Pr(f̂ = f̂i)

=
Pr(f̂ = f̂i|f = k)Pr(f = k)

Pr(f̂ = f̂i)

=
ps(s = f̂i − k)pf (f = k)

pf̂ (f̂ = f̂i)
, (11)

where ps(s = f̂i − k) is the probability that the noise s is
f̂i − k.

Our Calibrate step computes the expectation of the condi-
tional probability distribution in Equation 11 as the calibrated
frequency estimation of item i. Formally, Calibrate estimates
f̃i as follows:

f̃i =
∑

k

k · Pr(f = k|f̂ = f̂i). (12)

We show that our conditional expectation based calibrator
in Equation 12 is an optimal solution to the optimization
problem in Equation 10 as follows:

Theorem 2. Our conditional expectation based calibrator in
Equation 12 achieves the minimum MSE E((f ′− f)2|f̂ = f̂i)
among all calibrators f ′. Specifically, we have:

E((f̃i − f)2|f̂ = f̂i) ≤ E((f ′ − f)2|f̂ = f̂i), for all f ′.

Proof: See Appendix A.

Relationship and difference with Bayesian inference: Using
the terminology of the standard Bayesian inference, it seems
like that the probability distribution pf could be interpreted as
a prior probability distribution of the true item frequency and
the conditional probability distribution of the random variable
f , which is shown in Equation 11, could be interpreted as
the posterior probability distribution of the item frequency
after observing the estimated item frequency. However, the
key difference with the standard Bayesian inference is that
the prior probability distribution is independent from the
observed data (i.e., the observed estimated item frequencies
in our problem) in standard Bayesian inference, while we
estimate the parameters in pf using the observed estimated
item frequencies, i.e., pf is a data-dependent prior.

We note that any post-processing of a differential privacy
algorithm also achieves differential privacy with the same
privacy guarantee [15]. Therefore, Calibrate does not sacrifice
privacy guarantees. Next, we will discuss how to estimate the
probability distributions ps, pf , and pf̂ .

B. Estimating ps

Every time the data collector executes a LDP algorithm, we
will have d noise s1, s2, · · · , sd and d frequency estimations
f̂1, f̂2, · · · , f̂d. ps is the probability distribution formed by the
d noise in a single execution trial. Since the LDP algorithm is
a randomized algorithm, si and f̂i across different execution
trials are different, even if each user has the same item in
different execution trials. For simplicity, we model si and f̂i
as random variables, where the randomness comes from the



LDP algorithm and i = 1, 2, · · · , d. Moreover, we denote by
s
(j)
i and f̂ (j)i the noise and estimated frequency for item i in

the jth execution trial, respectively. s(1)i , s
(2)
i , · · · are random

samples from the random variable si, while f̂ (1)i , f̂
(2)
i , · · · are

random samples from the random variable f̂i.

We note that executing a LDP algorithm multiple trials may
compromise user privacy because the noise may be canceled
out via aggregating results in multiple execution trials. Mem-
oization [27], [12] was proposed to preserve privacy when the
data collector repeatedly executes the LDP algorithm to collect
data. In memoization, the client side pre-computes each user’s
perturbed and encoded item and responds to the data collector
with the pre-computed value in different execution trials. If
the memoization is adopted and users’ items do not change
in different execution trials, then the noise si and estimated
item frequency f̂i are the same in different execution trials.
However, to illustrate the randomness of si and f̂i, we assume
the memoization is not adopted.

Probability distribution of the noise for an item across mul-
tiple execution trials: State-of-the-art LDP algorithms [27],
[20], [30] satisfy pure local differential privacy [30]. Therefore,
we will focus on pure LDP algorithms. Pure LDP algorithms
estimate f̂i using Equation 3. The variable 1Support(tu)(i)
in the Equation 3 is a binary random variable, due to the
randomness of the LDP algorithm. Therefore, f̂i is essentially
a sum of n binary random variables (with some normalization).
According to the Central Limit Theorem [11], f̂ (1)i , f̂

(2)
i , · · ·

obtained in multiple execution trials of the LDP algorithm
approximately form a Gaussian distribution. Moreover, the
expectation of f̂i across multiple execution trials of the LDP
algorithm is fi, the true frequency of item i; and the variance
of f̂i is approximated as nq∗(1−q∗)

(p∗−q∗)2 [30].

Since s
(j)
i = f̂

(j)
i − fi, we obtain that s

(1)
i , s

(2)
i , · · ·

obtained in multiple execution trials also form a Gaussian
distribution. Moreover, we have the expectation and variance
of si as follows:

E(si) = E(f̂i)− fi = 0 (13)

V ar(si) = V ar(f̂i) =
nq∗(1− q∗)
(p∗ − q∗)2 (14)

The expectation and variance do not depend on the item index
i. Therefore, the random noise si for each item approximately
follows the same Gaussian distribution. In Figure 2, we put
the noise of each item in multiple execution trials in a matrix,
where the ith row corresponds to the noise of item i in different
execution trials and the jth column corresponds to noise of the
d items in the jth execution trial. For pure LDP algorithms,
the numbers in each row of the matrix are sampled from the
same Gaussian distribution.

Probability distribution ps formed by the noise for all
items in a single execution trial: In our formulation of
Calibrate, ps models the probability distribution of the noise
of the d items in a single execution trial. Specifically, for
the jth execution trial, ps models the probability distribution
formed by the noise s

(j)
1 , s

(j)
2 , · · · , s(j)d , i.e., the jth column

of the matrix illustrated in Figure 2. Since all numbers in the
matrix are sampled from the same Gaussian distribution, each

frequency of item i; and the variance of f̂i is approxi-
mated as nq⇤(1�q⇤)

(p⇤�q⇤)2 [3].

Since s( j)
i = f̂ ( j)

i � fi, we obtain that s(1)
i ,s(2)

i , · · · ob-
tained in multiple execution trials also form a Gaussian
distribution. Moreover, we have the expectation and vari-
ance of si as follows:

E(si) = E( f̂i)� fi = 0 (13)

Var(si) = Var( f̂i) =
nq⇤(1�q⇤)
(p⇤ �q⇤)2 (14)

The expectation and variance do not depend on the item
index i. Therefore, the random noise si for each item ap-
proximately follows the same Gaussian distribution. In
Figure ??, we put the noise of each item in multiple ex-
ecution trials in a matrix. For pure LDP algorithms, the
numbers in each row of the matrix are sampled from the
same Gaussian distribution.
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Probability distribution ps formed by the noise for all
items in a single execution trial: In our formulation of
Calibrate, ps models the probability distribution of the
noise of the d items in a single execution trial. Specif-
ically, for the jth execution trial, ps models the proba-
bility distribution formed by the noise s( j)

1 ,s( j)
2 , · · · ,s( j)

d ,
i.e., the jth column of the matrix illustrated in Figure ??.
Since all numbers in the matrix are sampled from the
same Gaussian distribution, each column of the matrix
follows the same Gaussian distribution. Therefore, ps is
a Gaussian distribution. Moreover, the Gaussian distri-
bution has a mean 0 and variance nq⇤(1�q⇤)

(p⇤�q⇤)2 . In our ex-
periments, we will show results to empirically verify that
ps is a Gaussian distribution with the known mean and
variance.

3.3 Estimating p f and p f̂

We consider two scenarios, unknown distribution fam-
ily and known distribution family, depending on whether
the data collector already knows some prior knowl-
edge about the probability distribution of the true item
frequencies or not. A distribution family is a class
of probability distributions that have similar properties.
For instance, Power-law distributions, Gaussian distri-
butions, and Laplacian distributions are different distri-
bution families. A distribution family is parameterized
by certain parameters, e.g., a power-law distribution is
parameterized by a parameter called exponent, while a

Gaussian distribution is parameterized by a mean and a
variance.

In the scenario unknown distribution family, the data
collector does not know the distribution family that the
probability distribution p f of the true item frequencies
belongs to. In this scenario, we first leverage smoothing
techniques in statistics and machine learning to estimate
p f̂ , given the d frequency estimations f̂1, f̂2, · · · , f̂d in a
single execution trial of the LDP algorithm. Then, based
on ps and p f̂ , we leverage signal processing techniques
(e.g., Discrete Fourier Transform and Inverse Discrete
Fourier Transform) to estimate the probability distribu-
tion p f .

In the scenario known distribution family, the data
collector knows the distribution family that p f belongs
to. For instance, many real-world phenomena–such as
video popularity, webpage click frequency, word fre-
quency in documents, node degrees in social networks–
follow power-law distributions [21, 22]; height of human
follows a Gaussian distribution [23]. Moreover, in a hy-
brid local differential privacy setting [24], some opt-in
users trust the data collector and share their true items
with the data collector. The data collector could lever-
age such opt-in users to roughly estimate the distribution
family that p f belongs to. When the distribution fam-
ily is known, we design a mean-variance method to first
estimate p f . Then, based on ps and p f , we further esti-
mate p f̂ . As we will demonstrate in our experiments, p f
and p f̂ can be estimated more accurately and the estima-
tion errors of our Calibrate step are substantially smaller,
when the distribution family is known.

3.3.1 Unknown Distribution Family

We first discuss how to estimate p f̂ and then discuss how
to estimate p f .

Estimating p f̂ : Recall that p f̂ is the probability
distribution formed by the d frequency estimations
f̂1, f̂2, · · · , f̂d obtained in a single execution trial of the
LDP algorithm. A naive method to estimate p f̂ is to sim-
ply count the number of times that a certain frequency
appears among the d frequency estimations. Specifically,
suppose we want to estimate the probability p f̂ ( f̂ = k̂).
We count the number of items among the d items whose
estimated item frequencies are k̂, and the number divided
by d is estimated as the probability p f̂ ( f̂ = k̂). Such
naive method faces a key data sparsity challenge. Specif-
ically, an item’s frequency (i.e., the possible values of the
random variable f̂ ) among n users could range from 0 to
n. Therefore, some values of the random variable f̂ will
not be observed among the d estimated item frequencies
or have very low occurrences. As a result, the probabil-
ity distribution p f̂ estimated by the naive method is not
accurate.

7

ps: Gaussian distribution 

Fig. 2: Matrix of noise in multiple execution trials.

column of the matrix follows the same Gaussian distribution.
Therefore, ps is a Gaussian distribution. Moreover, the Gaus-
sian distribution has a mean 0 and variance nq∗(1−q∗)

(p∗−q∗)2 . The
data collector can compute the variance using n, the number
of users, and ε, the predefined privacy budget (p∗ and/or q∗
depends on ε). In our experiments, we will show results to
empirically verify that ps is a Gaussian distribution with the
known mean and variance.

We note that for LDP algorithms that are not pure LDP, the
noise distribution ps does not necessarily follow a Gaussian
distribution. For instance, RAPPOR [27] with Bloom filters
is not a pure LDP algorithm (basic RAPPOR without Bloom
filters is pure LDP). We empirically found that ps does not
follow a Gaussian distribution. Moreover, ps depends on the
items’ true frequencies. For such LDP algorithms with data-
dependent noise distribution, our Calibrate is not applicable.
However, this limitation is minor since we aim to advance
state-of-the-art LDP algorithms, which satisfy pure LDP.

C. Estimating pf and pf̂
We assume the data collector knows the distribution family

that pf belongs to. For instance, many real-world phenomena–
such as video popularity, webpage click frequency, word
frequency in documents, node degrees in social networks–
follow power-law distributions [9], [10]; height of human
follows a Gaussian distribution [2]. Moreover, in a hybrid local
differential privacy setting [4], some opt-in users trust the data
collector and share their true items with the data collector.
The data collector could leverage such opt-in users to roughly
estimate the distribution family that pf belongs to. Moreover,
we design a mean-variance method to estimate pf . Based on
ps and pf , we further estimate pf̂ .

Estimating pf : Suppose the distribution family of pf is
parameterized by a set of parameters Θ, which we denote as
pf (f |Θ). For instance, the following shows the popular power-
law distribution family:

Power-law: pf (f = k|α) ∝ k−α (15)

We discuss two methods, maximum likelihood estimation
method and mean-variance method, to estimate the parameters
Θ. The maximum likelihood estimation method is a standard
technique in statistics, while the mean-variance method is
proposed by us. The maximum likelihood estimation method is
applicable to any distribution family, while our mean-variance
method can estimate the parameters of distributions that have



at most two parameters (many widely used distributions have
at most two parameters) more efficiently than the maximum
likelihood estimation method.

Maximum likelihood estimation method. For each fre-
quency estimation f̂i, we can compute its probability as∑
k pf (f = k|Θ)ps(s = f̂i − k), which is a function of

the parameters Θ. In maximum likelihood estimation, we aim
to find the parameters Θ that maximize the product of the
probabilities of the d frequency estimations. Specifically, we
obtain Θ via solving the following optimization problem:

Θ = argmax
θ

∑

i

log(
∑

k

pf (f = k|θ)ps(s = f̂i − k)). (16)

We can use the gradient descent method to solve the opti-
mization problem iteratively. Specifically, Θ is initialized to be
some random value; in each iteration, we compute the gradient
of the objective function with the current Θ, and we move Θ
along the gradient with a certain step size. Due to limited
space, we omit the details.

Mean-variance method. We propose a mean-variance
method to estimate the parameters Θ when pf has at most two
parameters. For instance, popular distributions–such as power-
law distributions, Gaussian distributions, Laplacian distribu-
tions, and Poison distributions–have one or two parameters.
For such distributions, our mean-variance method is much
more efficient than the maximum likelihood estimation method
because solving the optimization problem in Equation 16
involves sum over k. Since f̂ = f + s, we have:

E(f̂) = E(f) + E(s) (17)

V ar(f̂) = V ar(f) + V ar(s), (18)

where E and V ar represent expectation and variance, respec-
tively. Given the d frequency estimations f̂1, f̂2, · · · , f̂d, we
can estimate E(f̂) and V ar(f̂). Specifically, we have:

E(f̂) =
1

d

∑

i

f̂i (19)

V ar(f̂) =
1

d

∑

i

(f̂i − E(f̂))2 (20)

Moreover, E(s) and V ar(s) are known since s follows
a Gaussian distribution, according to our analysis in Sec-
tion III-B. E(f) and V ar(f) are functions of Θ. Therefore,
Equation 17 and 18 define a system of equations for the pa-
rameters Θ. Via solving the system, we obtain the parameters
Θ. When the distribution pf has one parameter, we can simply
use Equation 17 to solve the parameter.

Estimating pf̂ : Since the three random variables s, f , and f̂
are correlated as f̂ = f + s, the three probability distributions
ps, pf , and pf̂ have the following relationship:

pf̂ (f̂ = k̂) =
∑

k

pf (f = k)ps(s = k̂ − k). (21)

Therefore, given the probability distributions ps and pf , we
can estimate pf̂ .
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Fig. 3: True item frequencies in the (a) Kosarak dataset
and (b) Retail Market Basket dataset follow power-law
distributions.
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Fig. 4: Empirical noise distribution.

IV. EVALUATION

A. Experimental Setup

1) Two Real-world Datasets: Like previous studies [22],
[30], we use the Kosarak [21] and Retail Market Basket [7]
datasets. In the Kosarak dataset, items are webpages and
an item’s frequency is the number of user clicks of the
corresponding webpage. Overall, there are 41,270 webpages
and their total number of frequencies is 8,019,015. In Retail
Market Basket dataset, items represent products in supermarket
store and the frequency of an item is the sale of the product. In
summary, there are 16,470 products and the total frequencies
is 908,576. Like a previous study [30], we assume each user
generates one webpage click or buys one product, i.e., each
user has one item.

Like many real-world phenomena, the number of clicks
(i.e., frequencies) of the webpages or the sale of the product
roughly follows a power-law distribution. Specifically, Fig-
ure 3a and 3b respectively show the probability distribution
of the item frequencies in the two datasets, where the x-
axis is item frequency and y-axis is the fraction of items
that have a given frequency. The curve is a typical power-
law distribution observed in real world under log-log scale [9],
[10]: a large fraction of items have small frequencies, a very
small fraction of items have large frequencies (i.e., the known
long-tail property), and the curve is close to a line when the
item frequency is smaller than a certain threshold.

2) Compared Methods: We compare the following LDP
algorithms:
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Fig. 5: Precision, Recall, and F-Score of heavy hitter identification vs. threshold in Kosarak. The vertical line is the
significance threshold.
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Fig. 6: Precision, Recall, and F-Score of heavy hitter identification vs. threshold in Retail Market Basket. The vertical
line is the significance threshold.

Optimized Unary Encoding (OUE) [30]: OUE is an opti-
mized version of basic RAPPOR [27] and achieves state-of-
the-art performance. Please refer to Section II for the Encode,
Perturb, and Aggregate steps of OUE.

OUE-Zero: The high estimated item frequencies are statisti-
cally more reliable, as the probability that they are generated
from low frequencies is low. However, the estimated low item
frequencies may be less reliable because of the noise in the
LDP process. In existing methods [27], [30], frequencies that
are smaller than a significance threshold are unreliable and a
data collector can discard them. Specifically, the significance
threshold is defined as follows:

Significance threshold = φ−1(1− β

d
)
√
V ar, (22)

where φ−1 is the inverse of the cumulative density function
of standard Gaussian distribution, d is the number of items,
V ar is the estimation variance of the method, and we set
β = 0.05 as suggested by prior work [30]. Therefore, we also
evaluate OUE-Zero, which sets the estimated frequencies that
are smaller than the significance threshold to be zero.

OUE-Calibrate: We append Calibrate to OUE.

We obtained the publicly available implementation of OUE
from its authors [30], and we implemented our Calibrate
step in Python. For each experimental setting, we repeat the
experiments for dozens of times and compute the average
performance, e.g., estimation error for frequency estimation
and F-Score for heavy hitter identification.
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Fig. 7: Estimation errors for frequency estimation on the
two datasets as a function of the privacy budget ε. Both
OUE-Zero and OUE-Calibrate have orders of magnitude
of smaller estimation errors than OUE. Therefore, to better
contrast the difference between OUE-Zero and OUE-
Calibrate, we omit the results of OUE.

B. Results

Noise distribution ps is a Gaussian distribution: Figure 4
shows an empirical noise distribution for OUE on the Kosarak
dataset. Based on the analysis in Section III-B, we can theoret-
ically compute that the noise distribution has a mean of 0 and
a variance of 5434. We fit the empirical noise distribution with
a Gaussian distribution. The fitted Gaussian distribution has a
mean of -3.2 and a variance of 5405, which are very close to
the theoretically predicted mean and variance, respectively.
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Fig. 8: Precision, Recall, and F-Score of heavy hitter identification vs. privacy budget in Kosarak.
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Fig. 9: Precision, Recall, and F-Score of heavy hitter identification vs. privacy budget in Retail Market Basket.

Calibrate reduces estimation errors for frequency esti-
mation: Figure 7 shows the estimation errors of OUE-Zero
and OUE-Calibrate on the two real-world datasets. We find
that both OUE-Zero and OUE-Calibrate outperform OUE
by orders of magnitude, and thus we omit the results of
OUE to better illustrate the difference between OUE-Zero
and OUE-Calibrate. OUE-Zero outperforms OUE because
OUE-Zero resets the frequencies that OUE is unconfident to
be 0, while OUE-Calibrate incorporates prior knowledge to
recalibrate these frequencies. We also find that further resetting
the frequencies smaller than the significance threshold in OUE-
Calibrate has a negligible impact on the estimation errors.

OUE-Calibrate outperforms OUE-Zero. This is consistent
with our Theorem 2, which shows that Calibrate is the
optimal post-processing method. Moreover, the performance
gain is more significant as the privacy budget ε increases. For
instance, on the Kosarak dataset, the relative improvements of
OUE-Calibrate upon OUE-Zero are 16% and 97% for ε = 1
and ε = 5, respectively. Likewise, on the Retail Market Basket
dataset, the relative improvements of OUE-Calibrate upon
OUE-Zero are 2.4% and 65% for ε = 1 and ε = 5, respectively.
This is because a larger privacy budget means smaller noise
in the estimated frequencies of OUE. Subsequently, Calibrate
can better estimate the probability distributions that model the
prior knowledge from the estimated frequencies. As a result,
OUE-Calibrate shows more improvements over OUE-Zero.

Calibrate improves heavy hitter identification: Figure 5
and 6 show the Precision, Recall, and F-Score for different
thresholds on the Kosarak and Retail Market Basket datasets
respectively, where ε = 4. Moreover, Figure 8 and 9 show
the results for different privacy budgets, where the threshold
is chosen as the corresponding significance threshold for each
privacy budget. We select the significance threshold because

the frequencies smaller than the significance threshold are
unreliable in OUE. OUE and OUE-Zero have the exactly same
curves on these graphs, and thus we omit OUE for simplicity.

Overall, OUE-Calibrate outperforms OUE and OUE-
Zero, i.e., OUE-Calibrate has a better F-Score than OUE
and OUE-Zero for different thresholds (especially thresholds
that are smaller than the significance threshold) and privacy
budgets. More specifically, OUE-Calibrate achieves higher
Precision but lower Recall than OUE. The prior knowledge
about the true item frequencies is that they follow a power-law
distribution, which indicates that only a small fraction of items
have high frequencies. Therefore, OUE-Calibrate tends to
reduce item frequencies of the high item frequencies estimated
by OUE, via considering the prior knowledge. As a result,
given a threshold, OUE-Calibrate has a smaller number of
True Positives and False Positives than OUE, which leads to
higher Precision and lower Recall. The improvement of OUE-
Calibrate is more significant when the threshold is smaller.
This is because OUE has unreliable estimations for the smaller
frequencies, OUE-Zero simply resets them to be zero, while
OUE-Calibrate uses prior knowledge to recalibrate them.

When the threshold is larger than the significance threshold,
OUE-Zero and OUE have the same performance. When the
threshold is smaller than the significance threshold, OUE-
Zero has higher Precision but lower Recall when the threshold
is smaller. This is because OUE-Zero resets all frequencies
smaller than the significance threshold to be zero. Therefore,
OUE-Zero predicts the same set of items as heavy hitters for
all thresholds that are smaller than the significance threshold.
As the threshold becomes smaller, the True Positives would in-
crease and False Positives would decrease, which explains the
increasing Precision. However, False Negatives also increase
and they increase faster than True Positives, which explains
the decreasing Recall of OUE-Zero.



V. CONCLUSION AND FUTURE WORK

Frequency estimation with local differential privacy (LDP)
is a basic step in privacy-preserving data analytics without
a trusted data collector. In this work, we propose Calibrate
to calibrate item frequencies estimated by an existing LDP
algorithm. Our Calibrate incorporates prior knowledge about
noise in the estimated item frequencies and prior knowledge
about true item frequencies through statistical inference. We
show that such prior knowledge can be modeled as two
probability distributions, respectively; and the two probabil-
ity distributions can be estimated via integrating techniques
from statistics and signal processing. Our empirical results on
both synthetic and real-world datasets demonstrate that our
Calibrate can reduce estimation errors of state-of-the-art LDP
algorithms by orders of magnitude. An interesting future work
is to generalize our Calibrate to calibrate results for other
data analytics tasks such as frequent pattern mining.
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APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 leverages the following Lemma
from probability theory [11]:

Lemma 3. Suppose X is a random variable. E(X − t)2

reaches its minimum value when t = µ, where µ = E(X).

Proof:

For any value of t, we have:

E(X − t)2 = E(X2 − 2tX + t2)

= E(X2)− 2tµ+ t2 (23)

Then, we take derivative with respect to t:

∂E(X − t)2
∂t

= −2µ+ 2t (24)

E(X − t)2 reaches its minimum value when the derivative in
Equation 24 is 0. By setting the derivative in Equation 24 to
be 0, we get t = µ. Therefore, E(X−t)2 reaches its minimum
value when t = µ.

We can prove Theorem 2 via leveraging Lemma 3. Specif-
ically, we can view the random variable f in Theorem 2 as
the random variable X in Lemma 3, where the randomness is
conditioned on that f̂ = f̂i. Therefore, E((f ′ − f)2|f̂ = f̂i)
reaches its minimum value when f ′ = E(f |f̂ = f̂i) = f̃i.


