
200 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

What You Submit Is Who You Are: A Multimodal
Approach for Deanonymizing

Scientific Publications
Mathias Payer, Ling Huang, Neil Zhenqiang Gong, Student Member, IEEE,

Kevin Borgolte, and Mario Frank

Abstract— The peer-review system of most academic
conferences relies on the anonymity of both the authors and
reviewers of submissions. In particular, with respect to the
authors, the anonymity requirement is heavily disputed and
pros and cons are discussed exclusively on a qualitative level.
In this paper, we contribute a quantitative argument to this
discussion by showing that it is possible for a machine to
reveal the identity of authors of scientific publications with high
accuracy. We attack the anonymity of authors using statistical
analysis of multiple heterogeneous aspects of a paper, such
as its citations, its writing style, and its content. We apply
several multilabel, multiclass machine learning methods to
model the patterns exhibited in each feature category for
individual authors and combine them to a single ensemble
classifier to deanonymize authors with high accuracy. To the
best of our knowledge, this is the first approach that exploits
multiple categories of discriminative features and uses multiple,
partially complementing classifiers in a single, focused attack
on the anonymity of the authors of an academic publication.
We evaluate our author identification framework, deAnon, based
on a real-world data set of 3894 papers. From these papers, we
target 1405 productive authors that each have at least three
publications in our data set. Our approach returns a ranking
of probable authors for anonymous papers, an ordering for
guessing the authors of a paper. In our experiments, following
this ranking, the first guess corresponds to one of the authors of
a paper in 39.7% of the cases, and at least one of the authors is
among the top 10 guesses in 65.6% of all cases. Thus, deAnon
significantly outperforms current state-of-the-art techniques for
automatic deanonymization.

Index Terms— Data privacy, text analysis, text mining.

I. INTRODUCTION

IN ACADEMIA, the publication process and the merit
of a publication is often based on rigorous peer review.
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In computer science, many conferences rely on a double-blind
review process, where both the authors of a submission and
the reviewers of a paper stay anonymous. The motivation for
hiding the author’s identity during the review process is to
reduce any implicit or explicit bias a reviewer might have
against an author or an author’s affiliation. The motivation to
hide the reviewer’s identity is to provide proper feedback, to
support him or her in asking crucial but potentially unpleasant
questions, and for him or her to be protected from any attacks
by authors who feel disadvantaged or wrongfully rejected.

In order to ensure anonymity, the authors of a paper
are required to reformat their paper prior to submission by
(i) removing the names of authors and their affiliations from
the title section, (ii) describing all previous work in the third
person, and (iii) blinding particular references if anonymity
is not guaranteed otherwise. Generally, this process is very
cumbersome for the authors and often done after the paper is
already near completion. Sometimes, authors forget to conceal
some revealing references or forget to rephrase parts of the
paper that reveal information on some of their identities.
But even if authors remove their names, describe their work
in the third person, and blind their references properly,
it is a common belief that a knowledgeable reviewer can
correctly identify some of the authors of a paper with high
accuracy. Realistically, the reviewers work in related fields
and therefore they are likely to be aware of the current focus
and current projects of their peers (e.g., through discussions
at conferences, grant proposals, or resubmissions of rejected
papers). However, this belief requires experimental validation.

Several prior studies [5], [15] showed some success on
author identification for scientific papers using only the
citations made in the paper. However, their success was
mostly achieved in constrained space, e.g., identifying
authors for papers in specific domains (e.g., Physics [15] or
Machine Learning [5]), or for papers sharing common (self-)
citations [5]. Citations are just one source of information
and, to make a strong quantitative argument about author
anonymity, one should take into account all the information
that is available to reviewers.

We overcome these limitations by incorporating additional
heterogeneous information that is available in scientific papers.
This turns out to be a challenging task. Although additional
features derived from writing style and contents of the paper
are available in anonymous submissions, it is difficult to
combine them with citation features to improve accuracy sig-
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nificantly over citation-based author identification. Naturally,
features derived from different types of information differ
from each other, show different sparsity, and are at different
scale. We show in our evaluation that simply concatenating
all features regresses the overall results and reduces accuracy.

To make things worse, a scientific paper often has multiple
authors, each of them adding their own footprint to the paper,
which makes the problem much more difficult to model as
a whole. While the range of topics in an academic setting
is generally narrow, different authors may write papers on
the same topic, and the same author may change research
topics over time, which, in turn, makes it a challenging task
to leverage content information to identify authors.

To address these challenges, we introduce deAnon, a frame-
work for breaking the anonymity of authors of anonymized
academic papers. We target authors that published at least
3 papers in the past, and these papers are then used to train
multi-label classifiers to guide the attack. Our approach then
attacks the anonymity of the established authors.

The deAnon framework uses a large historical corpus of
papers in the Portable Document Format (PDF), the most
common distribution format for academic publications, as the
input to extract any relevant information, including but not
limited to title, authors, text, citations, and other information.
This textual data is then leveraged to extract specific features
based on writing style, topic, and citations for each author.
We adapt several multi-label, multi-class machine learning
methods to model the patterns exhibited in each feature cate-
gory, and propose a principled way to combine them into an
ensemble classifier to aggregate complementary information.
This final classifier is then used to break the anonymity of
the respective author for new, anonymized submissions.

The main contributions of our paper are the following:

1) We provide a systematic, large-scale study on break-
ing the authors’ anonymity of submissions based on
3,894 papers from 17 different computer science confer-
ences.1 Our results show that a machine can reveal an
author of a paper on the first guess with 39.7% accuracy
and at least one author is among the first 10 guesses with
65.6% accuracy. Our results confirm the anecdotal belief
that it is possible to guess authors with high accuracy
given prior knowledge of publications of these authors.

2) We design and implement deAnon, the first multi-
modal attack framework that learns per-author ensemble
classifiers based on writing style, topics, and citations.
Furthermore, we solve the problem of combining these
heterogeneous sources of information about an author in
one unified framework.

3) We discuss high-profile features and common pitfalls
that result in an immediate loss of anonymity for authors
in a scientific context (e.g., tools that embed user names
and author names in PDF files). We present possible
remedies that improve anonymity by leveraging our
attack framework in a feedback-guided process.

1Anonymized submissions are not openly available. To remedy this problem
we split the data corpus into a train and test data set (similar to related work),
removing the names and affiliations of papers in test data.

Fig. 1. Data processing pipeline for (a) training papers and (b) test papers:
(1) parsing papers, (2) cleaning title section and references, and (3) extracting
features.

The remainder of the paper is organized as follows: first,
in Section II, we discuss the design of our framework,
then, in Section III, we discuss data and feature extraction.
Following, in Section IV, we provide details on the prediction
engine and, in Section V, we evaluate deAnon based on a
real-world data set of academic papers from various top-tier
conferences. Future work based on deAnon and pitfalls one
has to take care of when authoring a paper are discussed
in Section VII. In Section VIII, we compare deAnon to
related work, and, finally, we conclude in Section IX.

II. DEANON DESIGN

Our approach aims to simulate a realistic peer-review
setting. We assume that an attacker knows and possesses or
has access to a large corpus of published papers in the related
fields and knows the names of the authors (e.g., by crawling
the conference websites or digital libraries and downloading
large sets of publications). The attacker extracts all kinds of
information from the paper corpus to build models guiding
the attack. Given an anonymous paper, the attacker extracts
information from the paper, feeds it to the model, and gets
the most likely list of candidate authors (ranked by some
criterion). Using the ranked candidate list, he/she can then
identify the authors of the paper (possibly by incorporating
other information that is not part of the model). In our setting,
the attacker is only interested in deanonymizing already known
authors, i.e., those who have already published a number of
papers. Accordingly, we define the paper deanonymization
problem as follows:

Paper Deanonymization Problem: Given a large corpus of
historical papers and their authors and given an anonymous
paper, correctly identify one or more authors of the paper from
the set of all authors in the corpus.

A. Approach Overview

Figure 1 illustrates the complete deAnon pipeline. At a high
level, deAnon deanonymizes submitted papers by comparison
with older papers using machine learning techniques. The
input to the deAnon framework is a data set of publicly
available papers published in the past years at different con-
ferences (in the PDF format). The query data is a set of
anonymized papers. Our parser recovers structured text from
the PDF automatically, which is then grouped into title, a list
of authors, abstract, introduction, related work, conclusion,
a list of citations, and remaining sections. Our framework then
transforms the structured data into vectors in the feature space
and trains classifiers that capture the publishing patterns of
different authors.
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On completion of training the classifier, the framework can
deanonymize anonymized papers in the PDF format. Given an
anonymous paper, the deAnon classifier outputs a prediction
score for each candidate author that indicates how likely
this candidate is (one of) the true author(s) of the paper.
These prediction scores are then used to rank the candidates
to make a sequence of educated guesses, from most likely
to least likely true authors of the paper. When making an
ultimate guess about authorship, the attacker may incorporate
additional characteristics or information that is not available
to our automatic method. If an author appears near the top of
the resulting list of ranked candidates, the author is considered
especially identifiable.

B. Input Data

A large corpus of training data is crucial for deAnon to
succeed. For each identifiable author we need papers that were
written by her or him. deAnon cannot identify authors without
prior publications in our training data set because it cannot
learn models for these authors.

In academia, the camera-ready version of most papers
is published and publicly available from the author’s or
institute’s website. In addition, most venues release published
papers in digital form. We use this data to train the classifiers.
Experienced authors, e.g., professors, have published multiple
papers as part of their own doctoral studies, during their
tenure process, or when advising their students. We observe
that a large portion of papers are authored or co-authored by
at least one experienced author. Generally, the data set should
be large enough to have prior publications for the experienced
authors of the fields.

III. DATA AND FEATURE EXTRACTION

In this section, we describe the design choices made to
extract data from scientific papers and present in detail how
we derive three categories of features from the extracted data.

A. Data Extraction

Some conferences and authors release papers in a
structured format, e.g., HTML. Unfortunately, there is no
unified structured format for which more than a couple
of papers are available and it is practically infeasible to
implement a converter for each format and conference.
For example, USENIX Security published many papers in
structured file formats, but the format varies from year to year.

In contrast, papers are almost always available in PDF
format. However, PDFs are hard to analyze because the
format focuses on the layout of the paper’s pages rather
than its text flow.2 Our parser recovers the missing structural
information using layout analysis and identifies the heading
section, which includes title and list of authors (for training
papers), the citations, and individual text sections like abstract,
introduction, related work, conclusions, and remaining text.

As it turns out, it is very hard to extract citations from
a corpus of PDF files. The main reason is that in order to

2The PDF format does not define a document structure but only focuses
on the placement of characters. PDF supports embedded images and some
publications are only available as scanned versions, relying on an OCR step.

TABLE I

FEATURES USED FOR CLASSIFICATION. IN TOTAL,

WE HAVE 10,727 HETEROGENEOUS FEATURES

be useful for author prediction, a citation must be matched
with an author in the database of all cited authors of the
data set and with papers of the database, if it exists there.
This matching step is hindered by different citation formats,
abbreviated names, different ordering of first name and last
name. Therefore, our parser matches the authors, title, and
parsed citations of each publication against the publicly
available DBLP [20] data to recover a clean version of the
meta-information.

B. Feature Extraction

Table I gives an overview of the different features used in
our classification models. Using structured data, we extract
features that can capture the characteristics of the individual
authors to train machine learning classifiers. deAnon uses
features from three different categories of information
available in the structured data: the writing style of the paper,
the topic of the paper, and the citations made in the paper.

1) Writing Style Features: The writing style of an author
describes the manner in which an author encodes information
for the audience. Identifying the author of a text based on the
writing style has an established history [1], [24], [25], [27].

We extract writing style features for each paper from
its text, excluding its references. Following the work by
Narayanan et al. [27], the extracted writing style features
reflect the distributions of characters and words such as the
frequency of the letters and the frequency of function words.

2) Topic Features: Unlike blog authors who may cover
substantially different topics from post to post, scientific
researchers generally focus on a core research area in which
they publish a series of papers. Thus, it is reasonable to assume
that the central topics of a paper correlate with the core areas
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of a researcher. Therefore, we assume that the topic of a paper
is informative for identifying its authors.

There are several ways to capture topic features of the
papers. A straightforward way is topic modeling on the corpus
of plaintext extracted from the paper [4], [30]. However, due
to the rich structure of research papers, some sections of
a paper, i.e., title, abstract, and conclusion, may have more
information to indicate the topic of a paper than the other
sections (e.g., related work or evaluation). For any well-written
paper, we believe that its text in title, abstract, and conclusion
sections was carefully drafted by the authors to capture the
main ideas and contributions of the paper in the best possible
way, thus the text in those sections approximates the main
topic of the paper well. Therefore, instead of performing topic
modeling, we leverage a bag-of-words model to extract textual
features from the title, abstract, and conclusion sections.

Moreover, we build a corpus out of text from title,
abstract, and conclusion sections from all papers, and finally,
leverage the MATLAB Natural Language Processing tool
(MatlabNLP [14]) to extract the bag-of-words features.
During extraction, we perform stop-word removal and word
stemming. Following the extraction, we normalize the features
by applying the standard Term Frequency-Inverse Document
Frequency (TF-IDF [28]) method.

Although we use topic features, we do not expect them to
provide reliable and accurate predictions alone, particularly
due to the following reasons: (i) different authors write papers
on the same topic and compete with each other, i.e., two
papers on a similar topic can be from distinct sets of authors;
(ii) authors might change their topic over time, and write
papers on topics that have little correlation to each other;
(iii) highly-productive authors, such as professors advising
large groups, publish papers on a diverse range of topics, and
even in different areas. Therefore, we imagine topic features
to be complementary to other more fundamental features.
Combining them together however, we can achieve better
results than by leveraging only individual features.

3) Citation Network Features: Scientific publications use
citations to refer a reader to related or similar previous work,
generally because the work to be presented builds upon this
earlier work or is compared to this work. A popular belief is
that the list of references provides hints on the authors of a
paper. Two main assumptions support this belief. First, it is
assumed that authors tend to cite their own papers. One reason
for this might be that authors have a better overview over their
own prior work than over the entire literature. Clearly, another
reason might be that citing a paper increases the paper’s impact
which is in the interest of the author. Second, it is often
assumed that authors use similar citations for many of their
papers. Since a thorough literature review for a given topic is
time intensive, authors might carry out this review only for
their first paper on a new topic and then later re-use their
findings for other papers on this topic. Consequently, a large
fraction of citations may be shared across papers of the same
author and the same set of papers that have not been cited in
earlier papers might have been missed in newer papers as well.

An important consideration for the citation network feature
is the informational content of each citation. If a paper is

cited by many different authors in different papers, i.e., if
it is a high-impact paper, then the informative value of this
citation is not as high as if the paper is of low-impact. Popular
and high-impact papers are well known by the academic
community and cited often. Rare papers, on the other hand,
are only known by few people and, in turn, leak more
information about the specific authors or their affiliations.

In earlier work [5], [15], citations have been used
as the only feature to deanonymize authors of scientific papers
and have been found to be highly discriminative, confirming
prior beliefs of researchers who participate in the peer-review
process. Therefore, we include the citations of a paper as
one of the features in our classification framework.

IV. PREDICTION ENGINE

In this section we describe our prediction engine that takes
the extracted features of a submitted paper as an input and
outputs the prediction for the authors of this paper. We begin
by explaining the task from a general machine learning point
of view, and follow-up by describing the various parts that
our approach leverages. Some of these individual classifiers
are off-the-shelf methods; some are tailored to the author
prediction problem. One of the biggest challenges that we
face is to combine these multiple classifiers to achieve a
significantly better prediction accuracy than any individual one
and prior work.

A. General Machine Learning Setting

We model the author prediction problem as a multi-label
classification problem, i.e., a paper can have more than
one labels (authors). Suppose we have m authors, and we
denote them as A = {a1, a2, . . . , am}. Moreover, we denote
a paper, its feature vector, and its labels as pi , pi ∈ χ,
and ai ∈ {0, 1}m , respectively, where χ is the feature space
and ai j = 1 ( j ∈ {1, 2, . . . , m}) means that the author a j

coauthored pi . In the training phase, a set of papers whose
features are p(tr)

i and labels are a(tr)
i are given to train a model,

where i = 1, 2, . . . , n(tr). In the test phase, we are given a
set of unlabeled testing papers whose features are p(te)

i ∈ χ,
where i = 1, 2, . . . , n(te). In contrast to conventional settings
where an estimated binary author vector is outputted, our
model produces a score vector si for each test paper p(te)

i ,
where a score entry si j corresponds to the likelihood that p(te)

i
is co-authored by a j . After predicting all n(te) test papers,
we combine all prediction scores to obtain a score matrix
S ∈ R

n(te)×m .
Figure 2 illustrates the prediction engine in detail.

In the following section, we describe the different classi-
fiers that operate on the introduced features and handle this
multi-label problem. Our prediction engine then combines the
output of these individual predictors into a single prediction
using ensemble learning.

B. Citation Classifiers

In Section III-B3, we argue that the references made in
a paper are a valuable source for predicting the authors.
In this section, we investigate different methods to leverage
this information on citations.
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Fig. 2. Workflow of the prediction engine: (1) classifier training,
(2) combining the classifiers using the ensemble method.

1) Top-Cited Author: The simplest guessing strategy is to
select the authors that are cited the most often in the paper.
While this method has been proven successful in previous
work [5], [15], it bears the drawback that it outputs only
a small set of candidate authors that are randomly ordered
and it provides no estimate on other potential authors. In our
experiments, we refer to this predictor as top-cited author.

2) Author Citation Rank: To overcome the limitations of
the top-cited author predictor, we introduce a predictor that
augments each candidate author with a citation score. This
citation score is the number of citations of the author’s work,
i.e., the count on how often the respective author is cited in the
paper. In this way, the predictor provides a list for the second
and third most likely author and so on [15]. Yet, a drawback
remains: authors who are not cited at all will not be assigned
a score by author citation rank.

3) Weighted Cosine Similarity Ranking: In order to provide
a prediction score for candidate authors that are not cited at all
in the paper, we adopt a method proposed by Bradley et al. [5].
Their method establishes a neighborhood relation between all
papers in the training set and all papers in the test set. With m
candidate authors, the feature vector of a paper pi is pi ∈ N

m ,
which indicates for each author how often he or she has been
cited in pi . For two papers whose features are pi , pi ′ ∈ N

m ,
the method computes the cosine similarity to measure how
close these papers are: S(pi , pi ′ ) = pi · pi ′ (‖pi‖‖pi ′ ‖)−1.

For each test paper p(te)
i , the n(tr) scores S(p(te)

i , p(tr)
i ′ ),

i ′ ∈ {1, 2, . . . , n(tr)} provide a neighborhood ranking of
all training papers. We define the ranking index as t ∈
{1, 2, . . . , n(tr)}. Authors of papers that are ranked high
(i.e., those that are close) receive a higher score than those
with a low ranking. There are several ways to aggregate scores
for each candidate author a j ∈ A over all the training papers.
Bradley et al. [5] suggest to aggregate the ranking scores using
exponentially decaying weights. We generalize this weighting
scheme idea and explore several other weight functions. The
general aggregation formula is:

si j =
n(tr)∑

t=1

δ(a(tr)
t j = 1) · w(t), (1)

where the switch function δ(x) returns 1 if the predicate x
is true and 0 otherwise. The method of Bradley et al. [5]3

is modeled with a decay base of 9% per rank position, i.e.,
w(t) = 1.09−t .

We investigate the following weight functions. We explore
linearly decaying weights with w(t) = n(tr) − t , as well as

3Equation 1 was multiplied by 500,000 for Bradley et al. [5]. We omit this
constant factor because it does not affect the order of guessing authors.

Fig. 3. (a) Weighting schemes. (b) Cross-validation search for optimal
weighting scheme on training data.

hardcore weights with w(t) = 1 − δ(t > τ). For hardcore
weights and τ = 1, this method boils down to assigning all
weight to the authors of the nearest paper in citation space.
More generally, for τ = k, the method assigns equal weight
to all authors of the k nearest neighbors. Finally, we improve
the exponential weighting scheme w(t) = d−t by selecting the
optimal decay base d through cross-validation on the training
data. We select d∗, such that it maximizes the success rate on
randomly hold-out training papers and then use w(t) = (d∗)−t

on the entire training set. We refer to this method as learned
weights.

All weighting schemes are graphically illustrated
in Figure 3 (a). The x-axis indicates the paper ranking
according to cosine similarity with the respective test paper.
The y-axis indicates the score that will be assigned to all
authors of the training paper at the respective rank. Figure 3 (b)
depicts the search result for cross-validation of the exponential
decay base d . We see that weighting those authors higher who
have more distant papers in citation space (that is d <1) leads
to a 0% success chance. For d > 1, authors of closer papers
are assigned higher weights, which immediately improves the
results. The accuracy continues to increase until, for d >1.18,
it slowly and monotonically decreases, suggesting that it pays
off to not completely ignore authors of papers that are more
distant than the nearest neighbor.

C. Generic Classifiers

In this section we explain three generic classifiers, SVM,
ML-kNN, and ranking by cosine similarity, that are feature-
agnostic, i.e., they work independently from the particular fea-
tures extracted from the data. We choose to use them because
they are capable to handle high dimensional sparse data, and
are widely used in multi-label classification problems [22].

1) Support Vector Machines: Support Vector Mach-
ines (SVM) are popular binary classifiers [10] and often
achieve the best prediction results for tasks with high dimen-
sional sparse data [19], [31]. It has also been shown [22]
that SVM-based variants perform among the best multi-label
classifiers in text-mining related settings.

We use linear SVM, which has been shown to be
efficient for training large-scale problems and to exhibit similar
prediction accuracy on high-dimensional sparse data as the
more complex and time-consuming kernel SVM [13], [19].
We use the known one-vs-all approach to transfer our
multi-label classification problem into multiple binary SVM
classification problems [32]. For each candidate author, the
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one-vs-all approach trains a classifier that distinguishes the
author’s papers from all other papers. The scores of the set
of all such binary classifiers are then combined to provide
a score vector for the multi-class problem. In the following,
we describe how each of these steps works in detail.
We use the LIBSVM implementation [9] to train the involved
support-vector machines.

Using the training data set, where each paper may have
multiple authors, we create m classifiers, one for each author
a j ∈ A. For the classifier of a j , we label the papers with
binary labels {+1,−1}. In this data set, the positive class
includes all the training papers that a j has co-authored, and
the negative class includes all the other papers in the training
set. We then train a SVM classifier c j on the training examples
and predict on the testing examples. When predicting whether
a test paper pi has a j as an author, instead of just outputting
a binary prediction, we output the SVM score si j . This score
can be interpreted as the probability that the classifier of a j

predicts that paper pi belongs to class +1. In total, we obtain
m scores from the m classifiers for each test paper, each of
which indicates how likely the given paper is authored by the
respective candidate author.

2) ML-kNN: ML-kNN is a classification method that has
a proven track record regarding classification performance on
multi-label problems [22], [33]. ML-kNN was first proposed
by Zhang et al. [34], where it was tested on three naïve
classification problems.

The ML-kNN classifier works as follows: For each test
paper pi , it requires the k most similar papers N(i) in the
training set as an input. For all three kinds of features, we use
cosine similarity as the similarity metric and compute N(i) for
each test paper. The classifier then computes a membership
count vector mi ∈ N

m , where mi j = ∑
i ′∈N(i) δ(a(tr)

i ′ j = 1).
Intuitively, the element mi j of this vector indicates how many
papers in N(i) are co-authored by a j . Treating these counts
as a feature, we compute the scores:

si j = P
(
ai j =1

∣∣mi j
)

(2)

3) Ranking by Average Cosine Similarity: Ranking by
average cosine similarity (CosSim) slightly differs from the
previous weighted ranking methods based on citations. It is
also based on cosine similarity but can be applied generically
to the other features and is not specific to citations. This
method has been shown to perform surprisingly well even
when only a small amount of training data is available [27].

Suppose we have m authors in the training data set. For
each test paper, we construct a characteristic vector whose
length is m, each entry of which corresponds to an author.
The characteristics vector is constructed as follows: First, for
each candidate author a j , we find all the training papers
that are co-authored by a j . Second, we compute the cosine
similarity in a generic feature space for all pairs of the test
paper and such training papers. This feature space could either
be spanned by style features, by topic features, or by citations.
Third, the score of author a j is the average of these cosine
similarities. The higher this score is, the closer in feature space
are the papers of this author to the target paper.

D. Combining Multiple Modalities

Given a set of heterogeneous features from multiple sources,
including writing style, topics, and citations of the paper,
there are a variety of ways to combine them together to learn
classifiers and make predictions. A naive way is to simply
concatenate all the different feature sets together into a single
feature set (e.g., concatenating all rows of different feature sets
together). However, we do not expect this approach to achieve
the best results, due to the heterogeneous nature, sparsity,
and scale of different features. This is also evident by our
experimental results in Section V.

Instead, we use ensemble methods to gracefully combine
multiple feature sets. Ensemble methods are machine learning
techniques that strategically combine multiple (diverse)
models to solve a particular computational intelligence
problem [29]. Ensemble learning is powerful in that it can
fuse together heterogeneous data from multiple sources,
and/or use multiple models to obtain better performance than
any of the constituent models could, especially when there is
a significant diversity among data and models [7].

In our setting, we design three classifiers: CosSim,
ML-kNN, and SVM for each of the three feature sets: writing
style features, topic features, and citation features plus the best
citation-specific classifier. As a result, we have 10 classifiers
that are naturally diverse (due to both the diversity among
features and models). We use a stacking ensemble approach
to combine the individual classifiers together [12]. In this
procedure, given c base classifiers fi (x)′s (e.g., CosSim on
citation features, SVM on topic features, etc.), we construct a
combined classifier that is a weighted combination of the base
classifiers fi (x)′s:

fM (x) =
c∑

i=1

wi fi (x) (3)

where wi > 0 is the weight of hypothesis fi , and wi > w j

means fi has more impact to the final prediction than f j .
To train this two-level ensemble classifier, we further divide

the training part of the dataset into two equal parts. The first
part is used to train individual base classifiers as described
above, and the second part is used to learn the weights wi ’s
for combining these base classifiers. We select the wi ’s that
achieve the best prediction accuracy on the second part of
the training data. We use a derivative-free pattern search
algorithm [16] to find the optimal wi ’s on the training data.
This algorithm requires no knowledge of the objective function
gradient. It samples points in the domain, and uses the
information it has obtained to decide where to search next.
This method has been applied to various cases for solving
large industrial problems [8], [35].

V. EVALUATION

In this section, we present and discuss our experimental
findings. We first explain the methodology used to inves-
tigate our framework, describe the data used to evaluate
our approach, and then analyze the results under different
experimental tasks.
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TABLE II

SOURCES FOR OUR DATASET. THE RIGHTMOST COLUMN INDICATES THE

NUMBER OF TEST PAPERS WITH AUTHORS BEING UNDISCLOSED TO

OUR FRAMEWORK. A3+ IS THE NUMBER OF PAPERS WHERE AT LEAST

ONE AUTHOR HAS AT LEAST 3 PAPERS IN THE DATASET

A. Methodology and Evaluation Metric

We simulate a realistic peer-review setting to analyze the
success rate of an adversary in guessing the authors of an
anonymous paper. In this setting, we use a large corpus of
papers from conference proceedings and a snapshot of the
DBLP data, but no other (e.g., online) information, to build
authorship prediction models.

For an anonymous paper, a prediction model outputs a
prediction score for each candidate indicating how likely this
candidate is (one of) the true author(s) of the paper. Using
this score one can rank all the candidates for a given paper.
Based on this ranking, the adversary can then narrow down
the list of possible candidates to assist in manual guessing.
In practice, a domain expert might achieve a high success
rate by discarding some of the higher ranked candidates due
to auxiliary side information. However, it is impossible to
simulate this and we only simulate an adversary that blindly
follows the ranking derived from our prediction model to make
a sequence of guesses, where the candidate author with the
highest score constitutes the first guess and the candidate
with the second highest score provides the second guess
and so on. We compute the probabilities that the attacker
hits one of the true authors for a given number of guesses,
i.e., the probabilities that the correct author is among the first
K predictions.

B. Dataset
Our parser extracts data from PDF versions of 8,739 papers

from 17 conferences in different domains as an input data
corpus. Table II lists the conferences and year that are used in
this analysis. We select the span of years where digital (non-
scanned) versions of the conference proceedings are available.
Out of 8,739 papers, our PDF parser recovers some of the text
and citations of 6,873 papers (79%). In the parsing process we
drop unparsable papers (papers are dropped due to encoding

problems, missing PDF features in our parser, or problems
matching the format of the paper to our extraction format). For
completeness, any unparsable papers may be added manually.

For each candidate author we require at least three prior
publications to extract precise features. We drop papers where
no author has at least three publications in our data set,
reducing the data set from 6,873 papers to 5,071 papers.

For the feature extraction we also drop papers where some
part of the paper was not parsed correctly (e.g., a missing
abstract). This very conservative approach reduces our data set
(training and testing) to 3,894 papers (77% of papers where
at least one author has at least three papers in the dataset).
There are 1,405 authors associated with these papers. These
authors constitute the set of candidate authors from which we
must predict when given an anonymous paper. On average
each author only has less than three training papers, making
it a very challenging machine learning task. Naturally, better
PDF parsing capabilities and feature extraction tools will lead
to more complete datasets and we expect that our prediction
rate increases alongside. Similar to [27], we use three types
of normalization for feature data when we train our prediction
models. We find that classifiers perform differently with
different normalizations. We only discuss the results with the
best normalization technique due to limited space.

Unfortunately, anonymized papers are not openly available
(and if they were available we would need additional ground
truth about the authors and affiliations to evaluate our
framework). We split unblinded data into training and testing
set, removing authors and affiliations from the submission for
the test data (comparable to related work). Our framework
relies on features that are present both in anonymized and
accepted versions of the paper. Our features are stable
and depend on the writing style, topic, and citations of a
submission which all do not change upon acceptance of a
paper and our approach remains valid while this assumption
holds. 3,516 papers from preceding years, starting in 1996,
are used to train our classifiers; and 378 papers from 2012
are used to test the accuracy of our classifiers.

C. Success Rates Under Different Scenarios

We quantify the success rates of our framework under three
different tasks that are defined as follows. The first task is
guess-one, the task to correctly guess at least one of the
true authors of a paper. The second one is guess-all, the
task to correctly predict all true authors of a paper. The last
one is guess-most-productive-one, the task to correctly guess
the author of a given paper that has the largest number of
publications. Intuitively, the guess-one and the guess-all task
span the entire range of difficulty for the attacker. The hardest
task is to guess all authors of the paper correctly, the easiest
task is to guess at least one author correctly. In practice, an
attacker would probably be satisfied with solving the guess-
one task. Successfully guessing the group of researchers that
has submitted the paper is sufficient in most cases. The real
target of an attacker is the name of the group that contributed
most to the paper. As this is closely connected with the most
productive (the academically ‘oldest’ author), we also compute
the success score for this task.
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Fig. 4. (a) Prediction accuracy of different tasks using a SVM classifier with
writing style features. (b) Accuracy of different citation classifiers.

We study the success rate of our framework for the three
different tasks using the SVM classifier with writing style
features. The results of this experiment are depicted in Fig-
ure 4 (a). The x-axis of this plot is the rank of the candidate
authors provided by the classifier. As the attacker slavishly
follows this ranking when carrying out his guessing attack,
this axis can be interpreted as the number of guesses of the
attacker. The y-axis is the probability, i.e., fraction of papers in
the test set, where the respective task is solved with that many
guesses. For instance, for 23% of all papers, the first guess of
this classifier suffices to predict the most productive author, i.e.,
to solve the task guess-most-productive-one. To solve the same
task for 47% of the papers ten or more guesses are needed.

As we expected, the prediction accuracy of the classifier
on all tasks increases quickly with the number of guesses.
The classifier achieves the best prediction accuracy for the
guess-one task, with around 28% success rate for the first
guess, i.e., 28% accuracy that the top ranked candidate is
among the true authors. The worst prediction accuracy is
achieved on the guess-all task. Interestingly, the prediction
accuracy (around 23%) for guess-most-productive-one is
close to that of guess-one. This confirms our belief that the
most productive author is the one that is the easiest to guess.

We also evaluated the prediction accuracy for all three
tasks using other classifiers with other features. In each case,
we observe a very similar pattern. Based on these findings,
we conclude that the guess-one task can be treated as the task
that a real-world attacker is most likely interested in, namely
correctly guessing the research group that has submitted the
paper. Therefore, in what follows, we only show the prediction
results for the guess-one scenarios.

D. Citation Data and Classifiers

We now present an overview of the citation data we
extracted from the entire corpus of all papers, followed by
the evaluation of all classifiers, proposed in Section IV-B, that
use citation features as an input. Later, we take the best such
classifier as an input for our ensemble method.

1) Basic Citation Statistics: Figure 5 depicts an overview
of the citation data. Figure 5 (a) shows the citation statistics
over all papers in our database. For each paper, we counted
the number of references for which we were able to correctly
retrieve a cleaned-up version from DBLP. The histogram
indicates that most papers cite between 5 and 15 other
publications. While this distribution rises quickly on the left
flank it has a long tail reaching to 50 or more citations.
Figure 5 (b) illustrates the citation network of the authors

Fig. 5. (a): Statistics of the number of references of a paper. (b): Network of
citations between authors. Authors are sorted by conferences and then by year.

in our data set. Entry (i, j) of this matrix indicates if author
i has cited author j at least once. If so, the entry is plotted
by a colored dot, if not it is white. The rows and columns
of this matrix are sorted in two ways. First, authors are
added conference by conference with a random ordering of
conferences (the biggest conference in this matrix is NIPS).
If an author has been already added by one conference he
will not be added again even if she/he published at other
conferences. Second, within a conference, earlier proceedings
come first. This organization of the matrix highlights two
dominant effects in this citation network. First, authors tend
to cite authors that publish in the same conferences. Some
conferences are well connected, indicating that they belong to
the same scientific community. Second, the earlier an author
has published, the more frequently he/she is cited on average.

2) Citation-Based Classification: We now compare the
guessing power of different weighting functions for author
rankings based on weighted cosine similarity of the citations.
Recall that these methods work as follows. For each test
paper, we first compute a nearest neighbor ranking by sorting
all training papers by decreasing cosine similarity between
their citation vector and the citation vector of the test paper.
As defined in Equation 1, the score of each candidate author is
a sum over all of her or his training papers, where each training
paper contributes with a weight that depends on its nearest-
neighbor rank with respect to the test paper. Figure 3 (a)
depicts all such weighting schemes that we used.

Figure 4 (b) indicates the guessing power of all citation-
based methods on the hold-out test data. It is apparent that
the Citation-Rank and Top-Cited author methods work best
with about 23%. Second best are the exponentially decaying
weighting schemes. Thereby, the exponential decay base of
9% per paper rank (‘CMU weights’) and our base of 18% per
paper rank selected by cross-validation (‘learned weights’),
perform almost equally well with a hit chance of 20%-21%.
These classifiers even produce estimates when the true authors
are not cited in the paper, which explains why they achieve
good results for a large number of guesses (beyond 50). The
linear weighting scheme performs worst with a 2% hit chance
of the first guess. The generic CosSim classifier applied to the
citation features achieves 12%.

Overall, the best classifier on citation features is to assign
each candidate author a score that equals the number of times
the author is cited by the paper (‘Citation-Rank’). It correctly
guesses at least one author for 23% of all test papers and for



208 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 1, JANUARY 2015

Fig. 6. Performances of different classifiers with (a) writing style features, (b) topic features and (c) citation features. The y-axis is the probability that the
correct author is among the first K guesses, for each K (x-axis).

later guesses its success rate grows faster than for all other
methods. Therefore, we take this classifier output as input
for our ensemble method. Taking the small set of most-cited
authors (‘top-cited author’) performs equally well on the first
and second guess. However, for third and later guesses its
success rate grows significantly slower than using the citation
numbers to rank these candidates.

E. Success Rates of Generic Classifiers
We investigate the predictive power of the generic classifiers

with different features. We generate guessing attacks with each
of the three machine learning methods (CosSim, ML-kNN
and SVM) with each of the three different types of features
(writing style, topic, and citation features), and show their
prediction accuracy in Figure 6. For citation features, we also
use the method of weighting each candidate author by how
often he or she is cited by the respective paper. We observe
for all classifiers on all features that the prediction accuracy
increases quickly with the rank. From Figure 6 (a) we see that
with the writing style features, the SVM classifier achieves the
best prediction accuracy up to rank 208, and then is dominated
by the CosSim classifier. From Figure 6 (b) we see that
with topic features, SVM classifier dominates the other two
when the rank is less than 6, and CosSim classifier dominates
when the rank is larger than 30. ML-kNN always performs
the worst. From Figure 6 (c) we see that with citation features,
all three generic classifiers perform similarly. The Citation-
Rank classifier, the method of ranking each candidate by
the number of citations, has significantly higher chances to
succeed across almost all ranks. For this method we see a
sharp jump of performance after rank 500 and 70% success
chance. This point marks the fraction of the remaining 30% of
the papers that do not cite any of the true authors of the paper.

Across plots (a), (b) and (c) in Figure 6, we observe
that: first, in a low rank region the Writing Style classifier
performs the best (e.g., with around 29% accuracy for the
first guess, i.e., the top ranked candidate is among the true
authors), Citation-Rank classifier performs the second best
(e.g., with around 23% accuracy for the first guess). Second,
the topic features have weaker prediction power than the
other two features, with SVM classifier achieving about 18%
accuracy for the first guess.

F. Ensemble Classifier
We evaluate methods that combine all classifiers with all

the features together to achieve better accuracy for author
identification.

1) Feature Concatenation Is Suboptimal: As depicted in
Figure 6, different features have different predictive power
for author identification, and different classifiers have different
capabilities to extract relevant information from features that
is informative with respect to authorship. Therefore, we do not
expect a single method to achieve the best results in combining
all the features. Instead we expect an ensemble of several
different classifiers on the features to achieve best results.

To prove our hypothesis, we first study how a single
classifier performs on data that simply concatenates all the
features together, i.e., for each paper, its feature representation
includes all features from writing style, topic, and citation.
In this experiment, we normalize the features from different
sets in a different way, train an SVM classifier on each of the
possible normalization settings, and plot the best prediction
results in Figure 7 (a). We see that the performance of SVM
with all features concatenated is very close to or even worse for
small ranks than that of SVM with only writing style features.
We also train and test CosSim and ML-kNN classifiers on the
concatenated feature data. The results of all these methods are
almost the same. This phenomenon partially results from the
fact that for each paper, both the topic features and citation
features are far more sparse than the writing style features.
When we concatenate these features, writing style feature data
dominates the other two, and the other two features contribute
far less to the accuracy of authorship prediction.

G. Ensemble Method Versus State-of-the-Art
We now investigate the performance of our ensemble

method and compare it with the feature-concatenation method
and Citation-Rank classifier, which is the state-of-the-art
technique for predicting authors of scientific papers. Among
the 10 classifiers (CosSim, ML-kNN and SVM on writing
style, topic and citation, respectively, plus the Citation-Rank
classifier), we observe from Figure 6 (c) that the Citation-Rank
performs significantly better than the three generic citation
classifiers, so we decide to drop the three classifiers and only
use the remaining seven classifiers for ensemble learning,
whose results are shown in Figure 7 (b) and Table III.

From Figure 7 (b), we see that our ensemble method
significantly outperforms both other methods, especially for
the low-rank region, where the attacker tries to pin down the
authors by a small number of guesses. More precisely, our
method achieves around 39.7% accuracy for a single guess,
and a 65.6% chance that 10 guesses contain at least one
true author. The other methods both have 22.5% (SVM-All)
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Fig. 7. (a) Feature concatenation does not work. (b) Comparing our ensemble
methods to previous work.

TABLE III

WEIGHTS OF DIFFERENT CLASSIFIERS IN THE

ENSEMBLE MODEL FOR THE YEAR 2012

or 23% (Citation-Rank) success chance with the first guess
and a 52.4% (SVM-All) or 60.4% (Citation-Rank) chance
with 10 guesses. This result confirms that combining multiple
modalities in a consistent way extracts more discriminative
information than using individual features or simply concate-
nating all features.

Table III shows the optimal weights learned by our
ensemble method for combining different classifiers together.
We observe the following two interesting results. First, large
weights are allocated to classifiers trained on both writing
style features (column 1) and citation features (column 3),
which confirm our intuition that they are predictive features
and complementary to each other. Second, zero or small
weights are allocated to classifiers trained on topic features
(column 2). Our hypothesis is that although topic features are
predictive, they are redundant to and dominated by citation
features, so the ensemble does not bother to use them. To test
our hypothesis, we train an ensemble classifier using the
six classifiers derived from writing style features and topic
features (but not citation features). As shown in Table IV,
this ensemble classifier puts much more weight on classifiers
trained on topic features, although the prediction accuracy
degrades (e.g., single-guess accuracy degrades to 26.1%
from 39.7%), due to the classifier not using citation features.

H. Cross-Validation
The different contents of the papers in our dataset, the

citations, the words used, and the scientific topics are all
random variables following some unknown distributions. As a
consequence the features that we extract from this data and
consequently also the predictions of our framework and the
resulting performance scores are random variables. As the
number of observations (here the number of papers) is finite,
the valid question arises to what extent our results vary with
different random realizations of the involved random variables.

In order to investigate the significance of our findings
we have carried out a cross-validation experiment where we
run our framework on different subsets of the data-set. This

TABLE IV

WEIGHTS OF DIFFERENT CLASSIFIERS IN THE ENSEMBLE MODEL

WITHOUT CITATION FEATURES FOR YEAR 2012

TABLE V

THE CROSS-VALIDATION RESULTS FOR THE ENSEMBLE

CLASSIFIERS IN YEARS 2010, 2011, 2012

approach is commonly used to evaluate methods that operate
on finite observations of random variables. Usually one simply
subdivides the given dataset into several random subsets and
carries out the method on these subsets such that different
quantiles of the target scores can be computed. Our particular
problem has two aspects that render traditional cross-validation
challenging. First, holding out papers from the training set
reduces the number of papers for some authors below three
papers such that they might drop out as candidate authors.
As the number of candidates influences the difficulty of the
deanonymization problem, it is difficult to compare across
random subsets of papers. Even worse, even though our
training dataset consists of many papers, only a small subset
of authors have more than three papers. This means reducing
the number of papers by subdividing the training set can have
a big effect. Second, papers appear in a chronological order
that cannot be ignored. In particular, younger papers cite older
papers and older papers cannot cite younger papers. Also,
scientific topics emerge at one point in time and there are
no papers about that topic before that time.

Considering these challenges, we have carried out three
different experiments for three consecutive years from
2010 to 2012. For each year we took all papers prior to that
year as the training set and the papers of that year as the test
set. This means there are no chronological inconsistencies.
However, there are fewer training papers and fewer candidate
authors for 2010 than for 2012. For earlier years, this effect
would be so significant that we did not go further back in time.

The results are depicted in Table V. We report the number of
training papers and the number of candidate authors along with
two success rates of guessing authors: correctly guessing with
one guess and hitting at least one correct author with the first
10 guesses. Clearly, fewer training observations (fewer papers)
render the classifiers weaker. In contrast, fewer candidate
authors make it easier to guess the true authors by chance.
Despite these factors, the success rates vary in terms of a few
percents only. Taking the trend of decreasing accuracies into
account, it seems like the number of candidate authors is the
dominating factor that overrides the statistical variations as
well as the influence of the number of training papers.
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I. Processing Time

Our deanonymization pipeline consists of three stages:
paper parsing, feature extraction, and classifier training.
We report the processing time used in each stage, and
discuss feasible ways to further speedup the pipeline. Unless
otherwise stated, performance numbers are derived by running
our pipeline on a single core on an Intel Xeon X5550 machine
at 2.67GHz.

1) Paper Parsing: Extracting all text elements and layout
reconstruction of a paper takes less than 30s on average.
Matching all references against a data set of well-known clean
references takes 10-30s per reference, resulting in an overall
processing time of 2 to 10 min. per paper. Data extraction
is embarassingly parallel as each paper can be processed
independently.

2) Feature Extraction: Our pipeline extracts writing style
(1206s), topic (3745s) and citation network features (273s) in
parallel for all papers. Topic feature extraction dominates this
stage. The majority of time is used for stop-word removal
and word stemming, which can be parallelized linearly (e.g.,
using 4 cores, the processing time is reduced to 839s). Fortu-
nately, we only need to do this vocabulary construction once
for all papers.

3) Classifier Training: The classifier training stage consists
of two steps: training individual classifiers and ensemble
learning. We use seven individual classifiers for the ensemble,
and all of them can be trained in parallel because there is no
dependence between different classifiers. So the processing
time in this step is dominated by the classifier taking the
longest time. Among the seven classifiers, ML-kNN with
writing style features takes the longest time (1898s). A large
portion of the time is spent for the computing of the pair-wise
similarity, which can be easily sped up using a scalable simi-
larity search algorithm [3]. SVM training for content features
ranks second (1562s) as we build one classifier per author.
Classifiers for individual authors could be trained in parallel.

Once individual classifiers are trained, the ensemble
learning is fast: it takes around 133s to search for the optimal
weights to combine different classifiers together.

4) Processing Summary: It only takes 2 to 10 minutes of
initial processing per paper. This paper parsing part must only
be executed once per paper. It takes less than 1 hour to extract
the features and to train the classifiers. This step must be
repeated whenever new data is added to the training corpus.
It takes between 2 to 10 minutes to attack a new, anonymized
paper given a pre-trained data-set.

VI. PDF CONTAINER LEAKED DATA FEATURES

During PDF compilation, many PDF generators add
auxiliary information about embedded files to the PDF. This
includes which tools and versions were used to generate
figures or tables, the directories of the figures relative to the
paper source, the internal original name of the citation in
the LaTeX file, or even the user name or company name,
which holds the program license. This information is only
infrequently available and very diverse such that it is hard to
include it to a large-scale approach like ours. However, it can

easily complement our attack as it can discard or highlight
authors in our ranking.

Out of 5,477 original papers 4,766 contained some form of
leaky strings. 532 (11.2%) papers directly contained a total
of 1,600 author names that make it trivial to identify the
original authors. This hidden author string is orthogonal to
the clear text in the title section. Browsing through the list,
we discovered many email addresses and full names that might
have been used during the registration of software components.
Some PDF tools extract the username and the associated full
name of the user that is producing the PDF and automatically
embed it in the PDF. In addition, we found 7 papers that
included a company name (embedded in licensing information
for software components used to generate content).

When looking at the creator and producer options in the
raw PDF stream we discovered that 1009 papers (21.2%)
contain at least one leaky creator and 1127 (23.4%) papers
contain a leaky producer. Each paper with a creator contains on
average 4.0 creators and each paper with a producer contains
on average 2.9 producers. Creators and producers identify the
software (and often the exact version and the operating system
kernel) that was used to generate the PDF or a figure of
the PDF. In addition, 255 papers (5.4%) contained a total of
2219 original file names for embedded figures and 9 papers
contained absolute file names that leak the user name of the
person generating the PDF.

If this information is available in an anonymous submission,
then it is a strong indicator for the original author. However,
since this information can easily be removed (e.g., the surplus
information like user names) or randomized (e.g., for internal
citation references), we refrain from leveraging any of those
features in our evaluation and discuss them here only for
completeness. We urge authors (and tool writers) to remove
this information for anonymous submissions.

VII. DISCUSSION

We have seen that our framework outperforms state-of-the
art author deanonymization. In this section we discuss practical
aspects of deploying our method in a conference submission
system. The offline approach presented in this paper uses only
published proceedings of earlier conferences for the analysis
and openly published and accessible DBLP data to verify the
extracted references. Using this data corpus a reviewer can
attack the anonymity of a submitted paper and recover the
authors possibly using additional online information like a
web search.

A. Automatic Anonymity Checker
A system that breaks author anonymity can be used in

an online setting as part of a conference submission system.
Comparable to a format checker, the submission system auto-
matically parses any uploaded paper and checks if anonymity
holds. If any of the real authors is in the (e.g., top 10)
set of projected authors then the submission system gives
feedback on which features were used to deanonymize the
paper (e.g., specific citations that stick out, writing style
of specific sections, or certain topic features). The authors
can then change the paragraphs or citations that leak most
information about their identity in an iterative process.
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Such an approach is feasible, can be implemented with low
overhead, and can be added to large conference submission
systems like EasyChair. The amount of new papers is finite
and can be processed when released to the digital libraries.
Each paper must be parsed once (2 to 10 min. per paper) and
the classifiers need to be trained after adding new proceedings
to the training set (up to a few hours of computation). In the
online setting a testing paper is parsed in roughly 2 min. and
can then be matched against the existing classifiers in seconds.

B. Mitigation

Looking at the ensemble set up, we see that the citation clas-
sification and writing style features help most in identifying
possible authors. While it is hard to consciously change one’s
writing style it is easier to decrease the prediction quality of
the citation classifier.

Given that the number of citations per candidate author is
the best individual classifiers, one should not use too many
self-citations. Also, many authors cite the same (sub-) set of
papers for different papers. The citation classifier identifies
these sub-sets and uses them to match different authors. So as a
second mitigation strategy authors should minimize the shared
set of cited papers to the necessary related work.

C. Additional Features
The format of a paper can also leak information about

authorship as different authors format and structure papers
differently. The location of the related work section (beginning
or end), the placement of figures on the page (top, bottom,
left or right column), the length of figure or table captions,
the length of the title or the individual sections can all reveal
information about the author.

The relationship between sets of authors evolves over time
as well as authors shift their focus area and they publish on
different topics. Temporal features group authors and co-
authors according to temporal information. For example, it is
much more likely that an author worked on a current paper
together with a recent co-author, than with a co-author he or she
stopped working together several years ago. The same argu-
ment also holds for topics: an author is more likely to publish
in a related area where he or she worked recently in, rather
than in an area where the author stopped publishing years ago.

While in our current model we do not use these additional
features, our prediction engine is open for additional feature
sets and classifiers, but we leave adding paper format features
and temporal features for future work.

VIII. RELATED WORK

Much prior work studies the degree of anonymity
of the review process for scholarly research articles.
Nanavati et al. [26] show that stylometry enables identifying
reviewers of research papers with reasonably high accuracy,
given that the adversary has access to a large number of
unblinded reviews of potential reviewers by serving on confer-
ence and grant selection committees. Several researchers have
studied the feasibility of identifying the author of an academic
paper under blind review solely from the citations [5], [15].
Our work goes one step further to demonstrate that by

gracefully combining writing style features, topic features, and
citations, identification accuracy is greatly improved.

There is a long list of prior work on identifying the author
of a text based on the writing style. The seminal work of
Mosteller and Wallace [25] leverages function words and
Bayesian analysis to identify the authors of the disputed
Federalist Papers. Research in the last decade has focused on
the machine-learning paradigm and the inclusive approaches
to feature extraction [1], [11], [21]. These studies consider
“topic-free” models and are able to discriminate between
100-300 authors. Afroz et al. [2] study author identification
in adversarial scenarios, and propose an effective method for
detecting stylistic deception in written documents.

Several other recent approaches extend the existing methods
to large-scale author identification. Koppel et al. [17], [18]
study authorship recognition on a blog corpus spanning
10,000 authors. Their work makes use of both content-based
features and stylistic features to identify authorship with
certain success rates. To remove the interference from context,
Narayanan et al. [27] perform a large-scale study on the
feasibility of Internet-scale author identification using stylistic
features only, and achieve 20% accuracy on a corpus of texts
from 100,000 authors.

Much research has been carried out to investigate techniques
for transforming text to successfully resist author identifica-
tion [6], [23]. These papers consider off-the-shelf stylometry
attacks and propose semi-automated techniques to identify
where and how to change the document to accomplish its
anonymization.

IX. CONCLUSION

We presented deAnon, a framework that solves the Paper
Deanonymization Problem using a multi-label, multi-class
machine learning approach. Based on a large data corpus
of existing proceedings from a diverse set of conferences,
deAnon trains 1,405 per-author classifiers based on multiple
heterogeneous modalities like their writing style, published
topics, and their citation behavior. On queries of anonymized
papers, deAnon returns a ranking of candidate authors.

Further, we evaluate deAnon using proceedings from
17 computer science conferences from 1996 to 2012 with
3,894 total papers, splitting these submissions into train and
test data sets. deAnon recovers one author with 39.7% prob-
ability on the first guess and with 65.6% probability the
top-ten guesses contain at least one true author, significantly
outperforming prior work (less than 21% for the first guess
using the CMU classifier on our data set).

These results demonstrate that deanonymization of
anonymous paper submissions is feasible and confirms the
common belief shared by many reviewers. Anonymity is
considerably limited by the effectiveness of authors to change
their behavior: either authors of anonymous submissions
need to take more care to anonymize their papers or we as a
community need to rethink the anonymous review process.
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