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Abstract— In this paper, we implement the first comprehensive
quantification of the perfect de-anonymizability and partial
de-anonymizability of real-world social networks with seed infor-
mation under general scenarios, which provides the theoretical
foundation for the existing structure-based de-anonymization
attacks and closes the gap between de-anonymization prac-
tice and theory. Based on our quantification, we conduct a
large-scale evaluation of the de-anonymizability of 24 real-world
social networks by quantitatively showing the conditions for
perfectly and partially de-anonymizing a social network, how
de-anonymizable a social network is, and how many users of a
social network can be successfully de-anonymized. Furthermore,
we show that both theoretically and experimentally, the overall
structural information-based de-anonymization attack can be
more powerful than the seed-based de-anonymization attack,
and even without any seed information, a social network can
be perfectly or partially de-anonymized. Finally, we discuss the
implications of this paper. Our findings are expected to shed on
research questions in the areas of structural data anonymization
and de-anonymization and to help data owners evaluate their
structural data vulnerability before data sharing and publishing.

Index Terms— De-anonymization, social networks, quantifica-
tion, evaluation.

I. INTRODUCTION

W ITH the development of information technology, social
networks and services have become a permanent part

of people’s lives. The large amount of resulting social data
is critical for academic research and has many important
governmental and healthcare applications [3]. (1) Academic
Research: It is well known that real-world social data are a
valuable resource for academic researchers. There are annual
events that are committed to sharing data, e.g., the KDD Cup
events,1 as well as many other academic events/institutions
that regularly provide social data to the research community.
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This has enabled and/or enhanced research in many areas,
including personalized advertising, secure routing, and Sybil
detection. (2) Government Applications: Social data are fre-
quently shared/transferred for government data mining tasks.
For instance, customer understanding and international fraud
detection can be achieved by leveraging the structure and
pattern analysis of phone-call networks [32]. (3) Business
Applications: Data sharing is now a common part of many
companies’ business models. For instance, as expressed in
their privacy policies, Google, Facebook, and Twitter share
their data with business partners for personalized precision
advertising and targeted advising, under which cost savings
and maximized advertising effectiveness can be achieved.
(4) Healthcare Applications: Graph data are also shared for
many healthcare-related applications. A typical application is
the analysis of the propagation of infectious diseases, e.g., the
flu, HIV, and Ebola.2

In contrast, social data increasingly contain the privacy
information of users [3], [4], [21]. To protect users’ pri-
vacy, the data owners (e.g., companies, government agencies,
hospitals) usually anonymize their data before sharing, trans-
ferring, and/or publishing it. Generally, data anonymization
techniques can be placed into four classes: naive ID removal,
k-anonymization (including randomly adding/deleting edges)
[12], [13], differential privacy [14]–[16], and other tech-
niques [29], [31]. The naive ID removal method has been
proven to be extremely vulnerable to state-of-the-art structure-
based de-anonymization attacks [3], [4]. It also cannot be
employed in k-anonymization to defend against structure-
based de-aonymization attacks for real-world social networks
due to its limitations, such as it not being scalable and
richer information being available to adversaries. Differential
privacy (and its variants) is designed to protect the privacy
of data in interactive queries [14]. However, structure-based
de-anonymization attacks are non-interactive queries. Thus,
differential privacy cannot prevent such attacks in its current
form (we discuss existing anonymization techniques in detail
in the Related Work section).

Due to the vulnerability of existing anonymization schemes,
the emerging structure-based de-anonymization attacks have
been experimentally demonstrated to break the privacy
of social networks effectively based only on the data’s
structural information, e.g., Narayanan and Shmatikov’s

2http://www.andrew.cmu.edu/user/rkoganti/realistic.html;
http://www.slideshare.net/jlcaut/ebola-hemoragic-fever-propagation-in-a-
modern-city-using-sir-model
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de-anonymization attack [3] and Srivatsa and Hicks’
de-anonymization attack [4]. Although the de-anonymizability
of social networks has been shown by experimental results
(heuristic algorithms) in [3] and [4], the following are
still open questions: Why are social networks vulner-
able to structure-based de-anonymization attacks? How
de-anonymizable is a social network? How many users
within a social network can be successfully de-anonymized?
Currently, there is some preliminary analysis on the
de-anonymizability of social networks under the Erdös-
Rényi (ER) random graph model or the preferential attach-
ment model [7], [9], [10]. On the one hand, these existing
analyses shed light on quantifying the de-anonymizability of
social networks. On the other hand, however, all the existing
analyses have some limitations, e.g., some did not consider
the seed information, used an unrealistic network model, used
unrealistic assumptions, or overlooked other more powerful
structural information. These limitations prevent most existing
analyses from being applicable to real-world social networks
(the detailed discussion of the existing works and their limi-
tations are presented in the Related Work section). To answer
these open problems for general real-world social networks,
we study the de-anonymizability of social networks in this
paper. Specifically, our contributions can be summarized as
follows.

1. To the best of our knowledge, we conduct the
first seed-based theoretical quantification of the perfect
de-anonymizability and partial de-anonymizability of social
networks under the ER model as well as under general
scenarios, where the social network can follow an arbitrary
network model. Therefore, our quantification can be applied to
real-world social networks and can quantitatively demonstrate
the vulnerability of real-world social networks to existing
structure-based de-anonymization attacks.

2. Based on our quantification, we implement a large-scale
evaluation of the perfect and partial de-anonymizability of
24 real-world social networks. In our evaluation, we show the
conditions for perfectly and partially de-anonymizing a social
network, how de-anonymizable a social network is according
to its topological properties, and how many users of a social
network can be successfully de-anonymized. Our evaluation
results demonstrate that most social networks, if not all, can
be perfectly or at least partially de-anonymized depending on
their structural properties.

3. Based on our quantification and evaluation, we find
that compared to the structural information associated
with known seed users, the other structural information
(the structure among anonymized users) is more useful in
improving de-anonymization attacks. We show that both
theoretically and experimentally, the overall structural
information-based de-anonymization is more powerful than
seed-based de-anonymization, and a social network is per-
fectly or partially de-anonymizable even without any seed
information. As a result, this finding provides the founda-
tion for the implication that one can design new effective
de-anonymization attacks without seed information.

4. We discuss the implications of this paper and future
work. Our quantification and evaluation enable understanding

the theoretical foundation of structure-based de-anonymization
attacks and their effectiveness in attacking various real-world
social networks (in other words, the vulnerability of real-
world social networks). Therefore, our work can shed light on
research questions in the areas of structural data anonymiza-
tion and de-anonymization. Furthermore, our quantification
and evaluation are expected to attract the attention of data
owners and help them develop more proper privacy protection
policies.

Differences Between This Work and Previous Works.
A preliminary version [1] of our paper was published at
NDSS 2015. In this journal version, we added more than 30%
new content, including both theoretical analysis and experi-
mental evaluation. Specifically, we emphasize the following:
(1) In the conference version, we only provided the proof
sketches of Theorems 5, 6, 8, and 10 due to space limitations.
In this version, we provide the complete proofs of the four
theorems along with explanations. (2) We stated our other
main theoretical conclusions, Theorems 1, 2, and 3, in the
conference version without justification. In this version, we
formally prove them, which completes our perfect and partial
de-anonymizability quantification and makes it easy to follow.
(3) In this version, we added a new section to evaluate the
condition for n for the (1 − ε)-de-anonymizability of the 24
social networks. We also analyzed the new evaluation results
in detail. (4) Compared to the conference version, we also pro-
vided more explanations to make the proposed technique more
understandable.

The rest of this paper is organized as follows. In Section II,
we describe the system model, assumptions, and problem
definition. The preliminary quantification under the ER model
is implemented in Section III. We quantify the perfect and
partial de-anonymizability of social networks under general
scenarios in Section IV. In Section V, we evaluate the
de-anonymizability of 24 real-world social networks. Finally,
the paper is concluded in Section VII. We summarize the
related work with remarks and provide more evaluation results
in the Supplementary File.

II. SYSTEM MODEL, ASSUMPTIONS, AND DEFINITIONS

In this section, we introduce the system model and related
assumptions and definitions. For the sake of readability,
we have summarized the frequently used acronyms and
symbols in Table I.

A. Data Model

In our quantification and evaluation, we use the same graph
model used in in [2]–[10] to represent social graphs. Specif-
ically, the anonymized social network is modeled by graph
Ga = (V a, Ea), where V a = {i |i is an anonymized user}
and Ea = {ea

i, j |i, j ∈ V a , is a social tie that exists

between i and j}. To de-anonymize Ga , we use an auxiliary
social network that has overlapping users with Ga and can be
obtained using multiple methods, e.g., data aggregation, data
mining, collaborative information systems, knowledge/data
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TABLE I

SUMMARY OF THE NOTATIONS

brokers [2]–[10], [19], [20].3 The auxiliary social network
is also modeled by a graph Gu = (V u, Eu), where V u =
{i |i is a known user} and Eu = {eu

i, j |i, j ∈ V u , is a social tie
that exists between i and j}. For theoretical quantification,
without describing too many of the mathematical details,
we assume that both Ga and Gu are undirected graphs.4

Furthermore, because our quantification and evaluation are
based on the graph model, our work can be potentially applied
to other kinds of data that can be modeled using graphs.

Given i ∈ V a , its neighborhood is defined as Na
i = { j | j ∈

V a ∧ ∃ea
i, j ∈ Ea}. Then, we define da

i = |Na
i | as the degree

of i . Similarly, for j ∈ V u , we can define its neighborhood
Nu

j and degree du
j .

B. Graph Sampling

To make the quantification mathematically tractable, we
employ the same assumptions on Ga and Gu as those used
in [7], [9], and [10]. First, V a = V u = {1, 2, · · · , n}
[7], [9], [10]. If V a �= V u , we can simply satisfy this
assumption by adding the users in V u \ V a to V a and adding

3For the detailed means of obtaining the auxiliary social network, please
refer to the discussion in [3] and [8]. In particular, with the emergence of data
brokers, many auxiliary data can be easily obtained at an affordable cost.

4In reality, many graph data carry direction information, i.e., they are
directed graphs. Furthermore, some de-anonymization attacks are designed
to utilize the direction information to improve the de-anonymization perfor-
mance, e.g., [3]. In this paper, we do not take into account the direction
information mainly because we want to make our quantification sufficiently
general. Although our quantifications are based on the undirected graph model,
they can be extended to directed graphs directly by overlooking the direction
information on the edges.

Nevertheless, when applying our quantifications to directed graphs, over-
looking the direction information may lead to inaccurate de-anonymizability
quantification (potentially underestimating the de-anonymizability of the data).
The impact of direction information on the de-anonymizability of graph
data itself is an interesting research topic and requires a proper model to
characterize the direction information, elegant quantification techniques, and
dedicated research. We will undertake this research as one of our future
research directions.

the users in V a \ V u to V u without changing Ea or Eu ,
i.e., adding dissimilar users to each graph with degree zero
to make V a and V u mathematically equivalent. Note that
this is a mathematical assumption that does not limit the
generality of this work. Our quantification is also valid for the
case V a �= V u .

Second, based on the first assumption, we assume that
Ga and Gu are two sampling versions of an underlying
conceptual graph G = (V , E) in the physical world, where
V = V a = V u and E is the set of true relationships among
users in V [7], [9], [10]. In particular, we assume that Ga is
sampled from G by independently and identically sampling
each edge in E with probability sa , i.e., for ∀ei, j ∈ E ,
Pr(ei, j ∈ Ea |ei, j ∈ E). Similarly, Gu is another sampled
version of G with probability su . This assumption is also
reasonable because people are usually involved in multiple
social networks and Ga and Gu are some particular social
networks in which the users in V are involved. For instance,
Ga could be LinkedIn (a professional social network of V ),
and Gu could be Facebook (a social network of V based on
friendships).

C. De-Anonymization
Based on our data model, a de-anonymization scheme can

be formally defined as a mapping: σ : Ga → Gu . Under σ ,
∀i ∈ V a , its mapping is σ(i) ∈ V u . Because V a = V u ,
for simplicity, we define a successful de-anonymization of
i ∈ V a achieved under σ if i = σ(i). In addition, we
use σ0 to denote the perfect de-anonymization, i.e., σ0 =
{(i, i)|i = 1, 2, · · · , n} (all the users in Ga are correctly de-
anonymized), and σk to denote any de-anonymization scheme
with k incorrect mappings, i.e., k users are incorrectly de-
anonymized under σk . Evidently, k ∈ [2, n]. In the rest of
this paper, we say that i ∈ V a is perfectly de-anonymizable
if i can be correctly de-anonymized, and V a is perfectly
de-anonymizable if all the users in V a can be correctly
de-anonymized.

Most existing de-anonymization algorithms (e.g., [2]–[4])
consist of two phases: seed identification phase that iden-
tifies some seed mapping information from V a to V u , and
mapping propagation phase that propagates the seed mapping
information to de-anonymize the rest of the anonymized users.
In this paper, we focus on quantifying the de-anonymizability
of social networks with seed knowledge. Therefore, as
in [2]–[4], we assume that we have identified a seed mapping
set from V a to V u by some technique (e.g., the methods
in [2]–[4]), denoted by S = {(i, σ (i))|i ∈ V a, σ (i) ∈ V u,
i = σ(i)}. Furthermore, we define � = |S| as the number of
seed mappings. For convenience, we denote the seed users
in V a and V u as Sa = {i |(i, σ (i)) ∈ S} and Su =
{i |(σ−1(i), i) ∈ S}, respectively. We now have to quantify
the de-anonymizability of a social network Ga given S, Gu

and the existence of G, sa , and su .
To make the quantification easy to follow and the conclu-

sions succinct, we further assume sa = su = s, i.e., we assume
Ga and Gu are two instances of G with the same sampling
probability. Note that this assumption does not change our
analysis in terms of any material detail. All our quantification
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results can be extended to the case sa �= su , only with more
complex expressions.

D. Measuring σ

Given Ga , Gu , and a de-anonymization scheme σ , we
measure σ as the edge difference between Ga and Gu under σ .
First, ∀ea

i, j ∈ Ea , we define σ(ea
i, j ) = eu

σ(i),σ ( j ). Furthermore,
let Ea

i (A ⊆ V a) = {ea
i,v |v ∈ Na

i ∩ A}, and let σ(Ea
i (A)) =

{σ(ea
i,v )|ea

i,v ∈ Ea
i (A)} (σ(eu

i, j ), Eu
i (A), and σ−1(Eu

i (A)) are
defined in the same way). Specifically, let Ea

i = Ea
i (V a) and

Eu
j = Eu

j (V u) for convenience. Then, we can define the edge
difference induced by mapping (i, σ (i) = j) ∈ σ as

�σ :(i, j ) = |σ(Ea
i ) \ Eu

j | + |σ−1(Eu
j ) \ Ea

i |, (1)

i.e., �σ :(i, j ) measures the edge difference of users i and j
under σ . Based on �σ :(i, j ), we measure σ by

�σ =
∑

(i, j )∈σ

�σ :(i, j ), (2)

which indicates the edge difference between Ga and Gu

under σ . Intuitively, because Ga and Gu are strongly cor-
related (highly similar), it is expected that �σ0 ≤ �σk for k ∈
[2, n] (we demonstrate this conclusion in Sections III and IV).

Similar to �σ :(i, j ) and �σ , we define �σ :(i, j )(S), which
measures the edge difference of a mapping (i, j) with respect
to S:

�σ :(i, j )(S) = |σ(Ea
i (Sa) \ Eu

j (Su)|
+|σ−1(Eu

j (Su) \ Ea
i (Sa)|, (3)

and �σ(S), which measures the edge difference of a
de-anonymization scheme σ with respect to S:

�σ (S) =
∑

(i, j )∈σ

�σ :(i, j )(S). (4)

III. QUANTIFICATION UNDER THE ERDÖS-RÉNYI MODEL

In this section, we quantify the de-anonymizability of Ga

with S, Gu , G, and s under the Erdös-Rényi (ER) model,
i.e., we assume that G(V , E) is a random graph generated
from the ER model G(n, p), where n is the number of
nodes in the graph and p specifies the probability of an edge
existing between any pair of nodes. Although real-world social
networks rarely satisfy the ER model [21], the analysis in this
section can shed the light on the quantification under general
scenarios (Section IV). For the sake of readability, we provide
all the proofs in Section II of Supplementary File.

A. S-Based Quantification

We first quantify the de-anonymizability of Ga based
only on the seed information S. For the de-anonymization
scheme σ , we assume that σ de-anonymizes each user i ∈
V a \ Sa to some user σ(i) ∈ V u \ Su such that (i, σ (i))
induces the least �σ :(i,σ (i))(S).5

5Because our focus is on quantifying the de-anonymizability of Ga , we
do not consider the actual de-anonymization algorithms. Specifically, we aim
to provide the theoretical foundation for the workability of structure-based
de-anonymization attacks, e.g., [2]–[4].

Theorem 1: If 1
4 · ps3(1−p)2

2−s−ps ≥ 2 ln n+1
� (i.e., � ≥

4(2 ln n+1)(2−s−ps)
ps3(1−p)2 ), then it can be stated asymptotically almost

surely (a.a.s.)6 that ∀i ∈ V a \ Sa, i is perfectly de-
anonymizable (i can be successfully de-anonymized).

In Theorem 1, we quantify the condition for p, s, and S
on perfectly de-anonymizing any user in V a \ Sa . Now, we
quantify the condition requirement for a stronger conclusion in
Theorem 2, which indicates the condition for p, s, and S such
that all the users in V a \ Sa are perfectly de-anonymizable.

Theorem 2: If 1
4 · ps3(1−p)2

2−s−ps ≥ 2 ln n+ln(2(n−�))
� (i.e., � ≥

4(2 ln n+ln(2(n−�)))(2−s−ps)
ps3(1−p)2 ), it can be stated a.a.s. that all the

users in V a \ Sa are perfectly de-anonymizable.

B. Sophisticated Quantification: Considering More Structure
Information

In the previous subsection, we quantified the
de-anonymizability of Ga based only on the seed knowledge.
Actually, besides the edges in Ea

i (S)/Eu
i (S), all the edges

in Ea
i /Eu

i can provide structure information that can be used
for de-anonymization. In this subsection, we quantify the
de-anonymizability of Ga based on all the adjacent edges
of i ∈ V a , i.e., we consider both the structural information
carried by seed mappings in S and the overall topological
information of Ga and Gu . First, we quantify the structural
conditions on Ga and Gu for perfect de-anonymization in
Theorem 3. Theorem 3 has two parts. The first part shows
the condition such that �σ0 < �σk for any given σk . The
second part demonstrates the condition for a much stronger
conclusion such that σ0 is the one and only scheme inducing
the least edge difference. Basically, the first part of Theorem 3
can be proven using a technique similar to that used in [7].
Here, we obtain a tighter bound by applying more elegant
quantification techniques.

Theorem 3: (i ) If 1
4

ps3(1−p)2

2−s−ps ≥ 2 ln n+1
k(n−k/2−1) , it can be said

a.a.s. that �σ0 < �σk (k ∈ [2, n]), i.e., it can be said a.a.s.
that the perfect de-anonymization scheme σ0 induces a smaller
number of edge differences than any given de-anonymization
scheme σk �= σ0; (i i ) If 1

4
ps3(1−p)2

2−s−ps ≥ (k+2) ln n+ln(2(n−�−1))
k(n−k/2−1) , it

can be said a.a.s. that the perfect de-anonymization scheme σ0
induces the least edge difference compared to all the other
de-anonymization schemes, i.e., it can be said a.a.s. that σ0 is
the only scheme inducing the least edge difference.

Theorem 3 has a very strong implication: even without any
seed information, it still possible to perfectly de-anonymize a
large-scale social network. We summarize this implication in
Corollary 1.

Corollary 1: If 1
4

ps3(1−p)2

2−s−ps ≥ (k+2) ln n+ln(2(n−1))
k(n−k/2−1) , it can

be said a.a.s. that the perfect de-anonymization scheme σ0
induces the least edge difference compared to all the other
de-anonymization schemes, i.e., it can be said a.a.s. that σ0 is
the only scheme inducing the least edge difference.

Based on Theorems 2 and 3 and Corollary 1, it is straight-
forward to obtain a more accurate (tighter) bound on the

6Asymptotically almost surely (a.a.s.) implies that an event happens with
probability tending to 1 as n → ∞.
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structure condition of Ga and Gu for perfect de-anonymization
as shown in Theorem 4.

Theorem 4: If 1
4 · ps3(1−p)2

2−s−ps ≥ min{ 2 ln n+ln(2(n−�))
� ,

(k+2) ln n+ln(2(n−�−1))
k(n−k/2−1) }, where � ∈ [0, n], Ga is perfectly

de-anonymizable.

C. Quantification With Error Toleration

We now study the structural condition for Ga and Gu

given S such that some de-anonymization error is tolerated.
Let ε ∈ [0, 1 − �

n ] be some constant value. We define Ga to
be (1 − ε)-de-anonymizable if at least (1 − ε)n users in Ga

are perfectly de-anonymizable. Then, we specify the condition
such that Ga is (1 − ε)-de-anonymizable with or without seed
information in Theorem 5, i.e., the condition that at most εn
incorrect de-anonymizations are allowable.

Theorem 5: If 1
4 · ps3(1−p)2

2−s−ps ≥ min{ 2 ln n+ln(2(n−εn−�))
� ,

(k+2) ln n+ln(2(n−εn−�))
k(n−k/2−1) }, where � ∈ [0, n], then Ga is

(1 − ε)-de-anonymizable.

IV. QUANTIFICATION IN GENERAL SCENARIOS

Although the ER model is suitable for elegant theoretical
analysis of the de-anonymizability of social networks, the fact
is that it is extremely rare, if not impossible, to observe real-
world social networks actually following the ER model [21].
Nevertheless, the ER model can shed light on the theoretical
quantification of the de-anonymizability of social networks
under general scenarios.

In this section, we quantify the de-anonymizability of Ga

under general scenarios, i.e., unlike in Section III, we assume
G(V , E) could now be some graph following an arbitrary
network model. To accelerate the quantification, we make the
following definitions. Given a graph G(V , E) with |V | = n
and |E | = m, its graph density is defined as ρ = 2m

n(n−1) .

Let U ⊆ V . The subgraph of G on U is defined as G[U ] =
G(U, EU = {ei, j ∈ E |i, j ∈ U}). Furthermore, let nU = |U |
and mU = |EU |. Then, the subgraph density of G on U is
ρU = 2mU

nU (nU −1) . Let U and W be two disjoint subsets of V
(U ∩ W = ∅), and let EU,W = {ei, j ∈ E |i ∈ U, j ∈ W } be
the set of edges connecting U and W , and mU,W = |EU,W |.
Then, the connectivity between U and W is defined as γU,W =
mU,W
nU ·nW

. Finally, we assume that the seed mapping set S is
randomly identified, which implies that each user in V is
selected with a probability q = �

n . We denote the seed users
in V as a set S for convenience, i.e., S = Sa = Su . We denote
the other users by set A = V \ S.

For the sake of readability, we provide all the proofs in
Section II of Supplementary File.

A. S-Based Quantification

In this subsection, we quantify the de-anonymizability of a
social network given a seed mapping set S. First, we show the
condition for perfectly de-anonymizing an anonymized user in
Theorem 6.

Theorem 6: If 1
4 · qs3(1−γS,A)2

2−s−sγS,A
≥ 2 ln n+1

di
, where q = �/n

and γS,A = mS,A
�(n−�) , it can be said a.a.s. that ∀i ∈ A, i is

perfectly de-anonymizable.

In Theorem 6, the condition where a user is perfectly
de-anonymized is quantified. We further quantify the condition
for perfectly de-anonymizing all the users in A in Theorem 7.

Theorem 7: If 1
4 · qs3(1−γS,A)2

2−s−sγS,A
≥ 2 ln n+ln(2(n−�))

di
, where

q = �/n and γS,A = mS,A
�(n−�) , it can be said a.a.s. that Ga is

perfectly de-anonymizable.

B. Sophisticated Quantification: Considering More Structure
Information

In the previous subsection, the perfect de-anonymizability
of social networks is quantified under general scenarios based
on S. As we discussed in Section III, for i ∈ A, besides
the structural connection to the users in S, the structural
information between i and other users in A is also helpful
for improving the de-anonymization performance (as shown
in Theorem 3). Similar to quantification under the ER model,
we quantify the de-anonymizability of social networks by
considering the overall structure information in Theorem 8.

Theorem 8: (i ) If 1
4 · s3(1−max{γV0,Vk ,ρVk })2

2−s−s·max{γV0,Vk ,ρVk } ≥ 2 ln n+1
mV0,Vk +mVk −k/2 ,

it can be said a.a.s. that �σ0 < �σk (k ∈ [2, n]),
i.e., it can be said a.a.s. that the perfect de-anonymization
scheme σ0 induces a lower edge difference than any
given de-anonymization scheme σk �= σ0; (i i ) If 1

4 ·
s3(1−max{γV0,Vk ,ρVk })2

2−s−s·max{γV0,Vk ,ρVk } ≥ (k+2) ln n+ln(2(n−�−1))
mV0,Vk +mVk −k/2 , it can be said

a.a.s. that the perfect de-anonymization scheme σ0 is the only
scheme inducing the least edge difference, i.e., Ga is perfectly
de-anonymizable.

Similar to Theorem 3, Theorem 8 also implies that a
large-scale social network is perfectly de-anonymizable with-
out seed information under general scenarios. We summarize
the condition in Corollary 2.

Corollary 2: If 1
4 · s3(1−max{γV0,Vk ,ρVk })2

2−s−s·max{γV0,Vk ,ρVk } ≥
(k+2) ln n+ln(2(n−1))

mV0,Vk +mVk −k/2 , it can be said a.a.s. that the perfect
de-anonymization scheme σ0 is the only scheme inducing the
least edge difference, i.e., Ga is perfectly de-anonymizable.

Based on Theorems 7 and 8 and Corollary 2, the following
conclusion is straightforward.

Theorem 9: If 1
4 · qs3(1−γS,A)2

2−s−sγS,A
≥ 2 ln n+ln(2(n−�))

di
or

1
4 · s3(1−max{γV0,Vk ,ρVk })2

2−s−s·max{γV0,Vk ,ρVk } ≥ (k+2) ln n+ln(2(n−�−1))
mV0,Vk +mVk −k/2 , where

� ∈ [0, n], it can be said a.a.s. that Ga is perfectly
de-anonymizable.

C. Quantification With Error Toleration

Now, we quantify the (1 − ε)-de-anonymizability of social
networks under general scenarios, where εn (ε ∈ [0, 1 − �

n ])
users are now allowed to be incorrectly de-anonymized.
We demonstrate the quantification in Theorem 10.

Theorem 10: If (i ) 1
4 · qs3(1−γS,A)2

2−s−sγS,A
≥ 2 ln n+ln(2(n−εn−�))

di
or

(i i ) 1
4 · s3(1−max{γV0,Vk ,ρVk })2

2−s−s·max{γV0,Vk ,ρVk } ≥ (k+2) ln n+ln(2(n−εn−�))
mV0,Vk +mVk −k/2 , where

� ∈ [0, n], Ga is (1 − ε)-de-anonymizable.
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TABLE II

DATASET STATISTICS

V. LARGE-SCALE EVALUATION

A. Datasets and Set Up

We use 24 various real-world social datasets that are mainly
from the Stanford Large Network Dataset Collection [22],
ASU Social Computing Data Repository [23], and other
sources [24], [25]. The datasets are shown in Table II with
preliminary statistics, where n is the number of users (nodes),
m is the number of edges among users, ρ is the graph density,
d is the average degree of the users, and p(k) (k = 1, 5, 10)
is the percentage of users with degree less than or equal to k.
We further briefly introduce the datasets in Section III of
Supplementary File. The detailed descriptions can be found
in the corresponding references.

For each dataset, we use the raw data except when removing
isolated users (most datasets do not contain any isolated users).
Note that our quantification is not limited to connected graphs.
It is also applicable to disconnected social networks. Further-
more, we do not consider the direction information even if a
dataset is a directed network. Again, this assumption does not
limit the evaluation or quantification. Because the direction
information can be used to improve the effectiveness of de-
anonymization attacks [3], it is possible that our quantification
and evaluation can be improved if we have more knowledge,
e.g., the direction information. In future work, we aim to
quantify the de-anonymizability of directed social networks.

To generate the anonymized and auxiliary graphs, we
follow the data sampling approach discussed in Section II,
i.e., we construct Ga and Gu from the raw data using
the sampling probabilities sa and su , respectively. Here, for

simplicity, we set sa = su = s. After constructing Ga and Gu ,
the seed mappings are chosen randomly from them (note that
seed mappings are some pre-known user mappings between
Ga and Gu), which implies that the high-degree users are not
given preference, as in [9] and [10], although they may be
more helpful as seed mappings. Consequently, our evaluation
results represent the general results of our quantification. Each
group of evaluations is repeated 50 times, and the results are
the averages of these 50 runs.

We quantify the de-anonymizability of a social network
using seed information and using the overall structural
information. Therefore, we use suffixes “-S” and “-A” to dis-
tinguish these two scenarios (e.g., Twiiter-A and Twitter-S),
where “-S” and “-A” imply using seed information and the
overall structural information, respectively. Not specifying the
suffix or the particular context implies using the overall
structural information by default. Due to space limitations
(and for the sake of readability), we evaluate the condition
for the perfect de-anonymizability of the datasets in Table II
in Supplementary File.

B. Evaluation of (1 − ε)-De-anonymizability

More details on the evaluation of (1−ε)-de-anonymizability
can be found in Supplementary File.

1) Evaluation of (1 − ε): In this subsection, we evaluate
the actual de-anonymizability of the 24 real-world datasets
by quantitatively demonstrating (1 − ε) (note that εn is the
error tolerated during the de-anonymization process), i.e.,
how many users in each social network can be successfully
de-anonymized in each specific scenario.
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Fig. 1. (1 − ε)-de-anonymization: �(1 − ε) vs. s. Default setting: � = 0.05n (5% users are seeds).

When all the structural information (including seed map-
pings) is considered, the lower bound on the percentage of
de-anonymizable users in the 24 social networks, i.e., �(1−ε),
is shown in Fig. 1 with different s. From Fig. 1, we have the
following observations.

• All the 24 social networks are partially de-anonymizable,
although they may not be perfectly de-anonymizable. For
instance, when s = 0.55, 20.88% YouTube users, 33.62%
Foursquare users, 66.69% Facebook users at New Orleans,
72.94% Google+ users, and 97.6% Twitter users are
de-anonymizable based on the overall structural information.
Consequently, the obtained quantitative results confirmed the
success of existing heuristic algorithms [3], [4]. This is also
consistent with our quantification of (1−ε)-de-anonymization:
if the low-degree users are treated as the tolerated de-
anonymization errors, the high-degree users are more likely
to be successfully de-anonymized, i.e., these social networks
are partially de-anonymizable. In other words, when perfect
de-anonymization is not achievable, these high-degree users
are still de-anonymizable because they carry enough structural
information.

• When s increases, �(1−ε) also increases, i.e., more users
can be successfully de-anonymized for each social network.
For instance, when s changes from 0.5 to 0.65, the percentage
of de-anonymizable users of Google+ increases from 58.76%
to 99%. The reason for this is similar to the explanation in
the previous subsection: a larger s implies that more common
edges are shared by Ga and Gu , i.e., more structural similarity
between Ga and Gu . Consequently, it is more likely that the
correct user de-anonymization induces a lower edge difference
(de-anonymization error).

• When s is increased above some value, several social
networks can be asymptotically perfectly de-anonymizable
(	(n) users can be successfully de-anonymized). For instance,
when s ≥ 0.78, s ≥ 0.66, and s ≥ 0.63, over 99% users
of Slashdot, FB-NO-link, and Google+ can be successfully
de-anonymized, respectively. The reason behind this is the
same that for the previous observation: a larger s implies
more structural similarity and a more de-anonymizable social
network.

• The social networks with a higher average degree d
are more de-anonymizable, e.g., when s = 0.6,
53.23% LiveJournal users (d = 17.9) are perfectly
de-anonymizable, while 73.38% Pokec users (d = 27.32) are
perfectly de-anonymizable. The reason is evident: a higher d
implies more common edges in Ga and Gu . Therefore, the
correct de-anonymization more likely induces a lower edge
difference.

We now study the (1 − ε)-de-anonymizability of the
24 social networks when we fix the network density, s, and
�/n while varying n. The results are shown in Fig. 2. From
Fig. 2, we have the following observations.

• When n increases, the percentage of de-anonymizable
users of each social network also increases for both
seed-based de-anonymization and overall structure-based
de-anonymization. For instance, when the network size
changes from 10n to 20n, the percentage of de-anonymizable
Flickr users increases from 41.65% to 59.08% in seed-based
de-anonymization; similarly, when the network size is 5n,
67.81% of LiveJournal users are de-anonymizable, while when
the network size is above 10.5n, LiveJournal is asymptoti-
cally perfectly de-anonymizable. This fact is consistent with
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Fig. 2. (1 − ε)-de-anonymization: �(1 − ε) vs. n. Default setting: s = 0.8 and �/n = 0.05.

our quantification. A large n implies richer structural informa-
tion when ρ is fixed. Hence, more users are de-anonymizable.

• As expected, the overall structural information is more
powerful in de-anonymizing social networks. This is also
consistent with our quantification. Because more struc-
tural information is considered, the probability that correct
de-anonymization induces more edge differences than incor-
rect de-anonymization is decreased. Consequently, “*-A”
de-anonymizes more users than “*-S”.

• As validated before, the graph density also has a positive
impact on �(1 − ε), i.e., a social network with a high graph
density is more de-anonymizable, as a higher ρ implies more
structural similarity between Ga and Gu .

Intuitively, if we have more seed mappings, more users
should be de-anonymizable even if we do not consider the
overall structural information. Theoretically, this intuition is
quantified in Theorem 7. We evaluate this quantification
by studying the impacts of the number of seed mappings
on the percentage of de-anonymizable users. The results

are shown in Fig. 3. From Fig. 3, we have the following
observations.

• When more seed mappings are available, more users
are de-anonymizable, e.g., when �(�/n) changes from 0.05
to 0.15, the percentage of de-anonymizable Google+ users
increases from 40.07% to 72.28%. The reason is evident, as
more seed mappings imply that more knowledge is available
to improve the de-anonymization accuracy, which can also be
seen from our quantification.

• Although ρ and d have a positive influence on �(1 − ε),
it is still possible that a social network with smaller ρ or
d may be more de-anonymizable than a social network with
higher ρ or d in some cases, e.g., BlogCatalog has a smaller d
but larger ρ than Google+, and Orkut has a smaller ρ but
larger d than BlogCatalog. This is because the seed mappings
in seed-based de-anonymization are randomly identified, and
the de-anonymization process is also affected by the degree
distribution of the social network. Consequently, both ρ and d
have impacts on the de-anonymizability of a social network.
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Fig. 3. (1 − ε)-de-anonymization: �(1 − ε) vs. �. Default setting: s = 0.8.

However, it is difficult to determine which one will dominate
the de-anonymizability. Generally speaking, the richer is the
structural information, i.e., the higher ρ and d are, the more
de-anonymizable the social network is.

2) Evaluation of �: In this subsection, we evaluate the
condition for � in (1 − ε)-de-anonymization. When ε = 0.4,
i.e., up to a 40% user de-anonymization error is tolerable, the
condition for � to perfectly de-anonymize at least 1−ε = 60%
users of each social network under different settings of s
is shown in Fig. 4. From Fig. 4, we can observe the
following:

• When s is below some threshold value, 	((1 − ε)n)
seed mappings are necessary to perfectly de-anonymize
(1 − ε)n anonymized users. For instance, when s < 0.72,
	(�/n) ∼ 0.6 for Google+ in seed-based de-anonymization,
i.e., almost 60% Google+ users have to be identified as
seeds; similarly, when s < 0.51, the condition for �
is also 	(�/n) ∼ 0.6 for Google+ in overall struc-
tural information-based de-anonymization. This is because
when s is small, a smaller number of common edges are
shared by Ga and Gu . Consequently, all the anonymized
users tend to be involved as seeds to achieve perfect
de-anonymizability.

• For seed-based de-anonymization, when s is above
some threshold value, 	(�/n) decreases with increases in s
(a smaller number of seed mappings is needed), e.g., when s is
increased from 0.8 to 0.9, 	(�/n) decreases from 0.47 to 0.3.
For overall structural information-based de-anonymization,
when s is above some value, it can be said a.a.s. that a social
network is (1 − ε)-de-anonymizable even without any seed
mapping information, e.g., when s ≥ 0.51, 	(�/n) ∼ 0 for
Google+. This is because (i ) when s increases, Ga and Gu are

more structurally similar. Thus, Ga is more de-anonymizable
in both seed- and overall structural information-based de-
anonymization; (i i ) when the overall structural information
is considered, the perfect de-anonymization scheme tends
to induce the least edge difference when s is above some
threshold value, i.e., a social network becomes (1 − ε)-de-
anonymizable when s is large enough, which is also consistent
with our quantification.

If we fix s = 0.8, the condition for � to make each social
network (1 − ε)-de-anonymizable under different ε is shown
in Fig. 5. From Fig. 5, we can see the following:

• In seed-based de-anonymization, to make social networks
with a low average degree (1 − ε)-de-anonymizable, it is
necessary to identify 	((1−ε)n) seed mappings. For example,
the social networks shown in Fig. 5 (a)-(d) have d < 15, and
the condition for � to make them (1 − ε)-de-anonymizable
is 	(�/n) ∼ 1 − ε. The reason for this is that a low d
implies a lower number of edges from anonymized users
to seed users. Consequently, more seed mappings are nec-
essary. On the other hand, if a social network has a large d ,
e.g., most of the social networks in Fig. 5 (e)-(h), a lower
number of seed mappings need to be (1−ε)-de-anonymizable
in seed-based de-anonymization. For instance, when ε = 0.6,
to make Google+ 0.4-de-anonymizable, 22.52% users are to
serve as seeds.

• In overall structural information-based de-anonymization,
if ε (the tolerated de-anonymization error) is above
some threshold value, all the 24 social networks are
(1 − ε)-de-anonymizable except for Hyves, which has a
very low d = 3.96. The reason for this is that when the
overall structural information (including seed mappings) is
considered and s = 0.8, the correct de-anonymization induces
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Fig. 4. (1 − ε)-de-anonymization: � vs. s. Default setting: ε = 0.4.

the lowest number of edge differences with higher probability
than in seed-based de-anonymization, which is consistent with
our quantification. Again, the results also confirm that the
overall structural information-based de-anonymization is more
effective.

We now evaluate the condition for � when the network size
changes while other network properties are fixed. The results
are shown in Fig. 6. From Fig. 6, we make the following
observations.

• When n varies, the behavior of 	(�/n) is similar to
that when s varies. For the social networks with low d,
e.g., the social networks shown in Fig. 6 (a)-(d), it is necessary
to have 	(�/n) ∼ 1−ε in seed-based de-anonymization. The
reason for this is also similar to that presented in the earlier
analysis. A small d implies a lower number of edges between
anonymized users and seed users. Hence, it is necessary to
have 	(�/n) ∼ 1 − ε to perfectly de-anonymize (1 − ε)n
users. On the other hand, when the network size is above

some threshold value and continues to increase, a lower
number of seed mappings are needed for social networks with
high d (social networks in Fig. 6 (e)-(h)) to be (1 − ε)-
de-anonymizable. The reason for this is also similar to that
presented in the earlier analysis.

• Again, the overall structural information-based de-
anonymization is more powerful, i.e., even without seed infor-
mation, the structure itself can make a social network perfectly
de-anonymizable. The quantification along with the evaluation
results provides the foundation for de-anonymization attack
without seed information.

VI. DISCUSSION AND FUTURE WORK

A. Discussion

In this paper, to the best of our knowledge,
we conduct the first comprehensive theoretical quantification
of the de-anonymizability of social networks (e.g., Facebook,
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Fig. 5. (1 − ε)-de-anonymization: � vs. ε. Default setting: s = 0.8.

Google+, Twitter) under both the theoretical ER model and
the general arbitrary network model. The most meaningful
significance of our quantification is that it provides the
theoretical foundation for the existing de-anonymization
attacks with available seed information [3], [4], i.e., for the
first time, we theoretically demonstrate that structure-based
de-anonymization attacks are sound. This closes the gap
between existing heuristic de-anonymization algorithms
(e.g., Backstrom et al.’s de-anonymization attack [2],
Narayanan and Shmatikov’s de-anonymization attack [3],
Srivatsa and Hicks’ de-anonymization attack [4]) and their
theoretical foundation.

Further limitations of this paper are summarized as follows.
To be accurate, we consider both the edges from anonymized
users to seed users and the edges among anonymized users in
the quantification of the overall structural information-based
de-anonymization. Some other global graph properties are
also helpful in improving structure-based de-anonymization

attacks, e.g., the betweenness centrality and the closeness
centrality of a user and the distance from a user to all
the other users. Although we believe these graph properties
can be used in improving de-anonymization attacks, it is
difficult to include them in the theoretical quantification.
All these graph properties represent a user’s global topological
importance/characteristics with respect to the entire graph.
Consequently, even if there is just one edge change, it may
change the global topological characteristics (e.g., between-
ness/closeness centrality, the distance from an anonymized
user to a seed) of an arbitrary number of users. It is very
difficult, if not impossible, to quantify the change in the global
topological characteristics of a user. Even though these global
topological characteristics are not considered in our quantifica-
tion, we demonstrate that the neighboring edges are sufficient
for perfectly or partially de-anonymizing a social network.

In this paper, we focus on closing the gap between
existing de-anonymization practice (i.e., heuristic algorithms)
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Fig. 6. (1 − ε)-de-anonymization: � vs. n. Default setting: s = 0.8 and ε = 0.4.

and its theoretical foundation by quantifying the perfect
de-anonymizability and (1 − ε)-de-anonymizability of social
networks. We do not specifically consider how to design
structural data anonymization techniques to defend against
such de-anonymization attacks. This is still an important open
problem because we have an increasing amount of social data.
We believe our quantification and evaluation in this paper
can shed light on future research questions in this area by
providing the theoretical foundation for structure-based de-
anonymization attacks and their effectiveness in attacking real-
world social networks. Furthermore, our quantification and
evaluation are expected to attract the attention of data owners
and help them develop more proper policies to protect social
data.

B. Future Work

Our future work will take the following directions:
(i ) We expect to develop a new mathematical model under

which we can theoretically analyze the change in users’ global
topological properties (e.g., betweenness/closeness centrality,
the distance to seed users). Then, we can quantify the de-
anonymizability of social networks more accurately. (i i ) In our
quantification, we simply assume that Ga and Gu are two
sampling versions of an underlying conceptual graph G.
In the future, we propose to remove this assumption by
studying more practical and general models to characterize the
structural correlation between the anonymized graph and the
auxiliary graph. (i i i ) In our quantification, we do not explicitly
involve the noise level because we do not involve a specific
noise description model (actually, we currently do not have
proper schemes to add noise with usability preservation, to the
best of our knowledge). In the future, we propose to quantify
the de-anonymizability of social networks by involving a func-
tion describing the existing noise. (iv) Our quantifications are
conducted based on undirected graphs. Although they can be
applied to directed graphs, the de-anonymizability of a graph
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may be underestimated (as shown in [3], direction information
can be used to improve the de-anonymization performance).
Therefore, we plan to quantify the de-anonymizability of
directed graphs. (v) As pointed out previously, we do not
have effective data anonymization techniques for structure-
based de-anonymization attacks. We propose to study this
open problem based on our quantification and evaluation and
develop a secure data publishing platform that can examine
the data de-anonymizability, anonymize data properly with
usability preservation, and publish data securely. We also
propose to develop new social data protection policies for data
owners (e.g., companies, government agencies, hospitals.).

VII. CONCLUSION

In this paper, we study the de-anonymizability of social
networks based only on their structural information. First,
we quantify the perfect de-anonymizability and (1 − ε)-de-
anonymizability of social networks with seed information
under the mathematical ER model. Subsequently, we extend
our quantification to general scenarios, where a social net-
work can follow an arbitrary network. Third, based on our
quantification, we conduct a large-scale evaluation of the
de-anonymizability of 24 real-world social networks. Finally,
we discuss the implications of this work. Our findings are
expected to shed light on research questions in structural data
anonymization and de-anonymization and help data owners
evaluate their data vulnerability before data sharing/publishing.
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