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ABSTRACT
Graph-based classification methods are widely used for security
analytics. Roughly speaking, graph-based classification methods
include collective classification and graph neural network. Attacking
a graph-based classification method enables an attacker to evade de-
tection in security analytics. However, existing adversarial machine
learning studies mainly focused on machine learning for non-graph
data. Only a few recent studies touched adversarial graph-based
classification methods. However, they focused on graph neural
network, leaving collective classification largely unexplored.

We aim to bridge this gap in this work. We consider an attacker’s
goal is to evade detection via manipulating the graph structure.
We formulate our attack as a graph-based optimization problem,
solving which produces the edges that an attacker needs to ma-
nipulate to achieve its attack goal. However, it is computationally
challenging to solve the optimization problem exactly. To address
the challenge, we propose several approximation techniques to
solve the optimization problem. We evaluate our attacks and com-
pare them with a recent attack designed for graph neural networks
using four graph datasets. Our results show that our attacks can
effectively evade graph-based classification methods. Moreover,
our attacks outperform the existing attack for evading collective
classification methods and some graph neural network methods.
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1 INTRODUCTION
Graph-based classification methods have been widely applied to
various security problems such as malware detection [14, 59], fraud-
ulent user detection in social networks [10, 25, 36, 67, 68, 72, 74],
fake review detection [1, 65], auction fraud detection [47], APT
infection detection [46], and attribute inference [26, 27, 37]. Specif-
ically, given 1) a graph (undirected or directed) and 2) a training
dataset (some labeled positive nodes and labeled negative nodes), a
graph-based classification method predicts the unlabeled nodes in
the graph to be either positive or negative. The semantics of the
graph, positive, and negative are different in different security prob-
lems. For instance, in fraudulent user detection, the graph could
be a friendship graph where nodes are users and edges represent
friendship between users, while positive means fraudulent user and
negative means normal user.

Roughly speaking, there are two types of graph-based classifi-
cation methods, i.e., collective classification [1, 9, 10, 14, 23, 25, 36,
40, 47, 59, 64–67, 72, 74] and graph neural network [5, 38, 52, 69].
Collective classification defines a prior reputation score to each node
based on the training dataset, assigns certain weights to edges, and
propagates the prior reputation scores among the weighted graph
to obtain a posterior reputation score for each node. The posterior
reputation scores are used to classify nodes. For instance, certain
state-of-the-art collective classification methods assign the same
weight to all edges and use Linearized Loopy Belief Propagation
(LinLBP) to propagate the reputation scores [37, 64]. Graph neural
network generalizes neural networks to graph data. These methods
learn feature vectors for nodes based on the graph structure and
use them to classify nodes. For certain security problems, collective
classification outperforms graph neural network [65]. Moreover,
collective classification methods were deployed in industry for
malware detection [14, 59] and fraudulent user detection in social
networks [9, 10].

As graph-based classification methods are adopted to enhance
security, an attacker is motivated to evade them. However, existing
studies [6, 7, 12, 19, 20, 22, 28, 31, 32, 34, 39, 42, 45, 48, 51, 53–
55, 58, 62, 63, 70, 71, 73] on adversarial machine learning mainly
focused on machine learning for non-graph data, with only a few
studies [8, 15–17, 41, 57, 61, 77–79] as exceptions. In particular,
Chen et al. [15] proposed an attack against graph-based clustering,
e.g., spectral clustering. Several recent work [8, 16, 17, 57, 77, 78]
proposed attacks to graph neural network methods via manipu-
lating the graph structure, i.e., inserting fake edges to the graph
or deleting existing edges. However, collective classification under
adversarial setting is largely unexplored.
Ourwork: In this work, we study attacks to collective classification
via manipulating the graph structure. We generate the fake edges
and the deleted edges based on the collective classification method
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LinLBP, because 1) LinLBP achieves state-of-the-art performance,
and 2) LinLBP uses the same weight for all edges, making our
formulated optimization problem easier to solve. However, we will
empirically show that our attacks based on LinLBP can also transfer
to other collective classification methods and graph neural network
methods, as they all leverage the graph structure.

We consider an attacker has some positive nodes (e.g., malware,
fraudulent users, fake reviews) and aims to spoof LinLBP to mis-
classify them as negative via manipulating the graph structure.
In other words, the attacker aims to increase the False Negative
Rate (FNR) of its positive nodes. We propose to characterize the
attacker’s background knowledge along three dimensions: Parame-
ter, Training dataset, and Graph, which characterize whether the
attacker knows the parameters (i.e., prior reputation scores and
edge weights) used by LinLBP, the training dataset, and the com-
plete graph, respectively. Inserting/Deleting different edges may
incur different costs to the attacker. For instance, inserting an edge
between the attacker’s positive nodes is less expensive than in-
serting an edge between two negative nodes that are not under
the attacker’s control. Therefore, we associate a (different) cost for
inserting or deleting each edge. The attacker’s goal is to achieve a
high FNR (e.g., FNR=1) for its positive nodes with a minimal total
cost of inserting/deleting edges.

We formulate our attack as an optimization problem, where the
objective function is the total cost of modifying the graph structure
and the constraint is FNR=1 for the attacker’s selected positive
nodes. However, it is computationally challenging to solve such
an optimization problem because 1) the constraint is highly non-
linear and 2) the optimization problem is a binary optimization
problem (inserting or deleting an edge is a binary decision). We
propose several techniques to approximately solve the optimiza-
tion problem. For instance, we relax the binary variables in the
optimization problem to be continuous variables and convert them
to binary values after solving the optimization problem; we use
posterior reputation scores as an alternative to FNR and translate
the constraint FNR=1 into the objective function via Lagrangian
multipliers; and we propose to alternately solve the optimization
problem and compute the posterior reputation scores.

We first extensively evaluate our attacks using three real-world
graphs with synthesized positive nodes and a real-world large-scale
Twitter graph with real positive nodes. Our attacks are effective,
e.g., our attacks can increase the FNR from 0 to be above 0.90
in many cases. Our attack is still effective even if the attacker
does not have access to the parameters of LinLBP (our attack can
use substitute parameters), the training dataset (our attack can
use a substitute training dataset), and the complete graph (a 20%
partial graph is sufficient). Second, our attacks can also transfer
to other collective classification methods including random walk
based methods [36], Loopy Belief Propagation based methods [25],
and recent Joint Weight Learning and Propagation method [65] that
learns edge weights, as well as graph neural network methods
including Graph Convolutional Network (GCN) [38], LINE [60],
DeepWalk [50], and node2vec [29]. Third, we compare our attack
with a recent attack called Nettack [77] that generates fake edges
and deleted edges based on GCN. We find that for GCN, Nettack
outperforms our attack; for other graph neural network methods,

our method outperforms Nettack; and for collective classification
methods, our attack substantially outperforms Nettack.

Our contributions can be summarized as follows:
• We perform the first systematic study on attacks to collective
classification via manipulating the graph structure.

• We propose a threat model of attacking collective classifica-
tion, formulate our attack as an optimization problem, and
propose techniques to approximately solve the problem.

• We extensively evaluate our attacks and compare them with
a recent attack using multiple datasets.

2 RELATEDWORK
2.1 Graph-based Classification Methods
Roughly speaking, there are two types of graph-based classification
methods, i.e., collective classification and graph neural network.

2.1.1 Collective Classification. Collective classification has been
applied for graph-based security analytics for over a decade. Specifi-
cally, given a training dataset, collective classification first defines a
prior reputation score for each node in the graph. Then, it assigns or
learns weights for the edges in the graph and propagates the prior
reputation scores among the graph to obtain a posterior reputation
score for each node. The posterior reputation scores are used to clas-
sify unlabeled nodes. Different collective classification methods use
different ways to define the prior reputation scores, assign/learn
the edge weights, and propagate the prior reputation scores. In
particular, state-of-the-art collective classification methods include
Random Walk (RW) based methods [9, 10, 30, 36, 40, 72, 74, 76],
Loopy Belief Propagation (LBP) based methods [1, 14, 23, 25, 47, 59],
Linearized Loopy Belief Propagation (LinLBP) basedmethods [37, 64],
and Joint Weight Learning and Propagation (JWP) method [65].

RW-based methods assign prior reputation scores 1, 0, and 0.5
to the labeled positive nodes, labeled negative nodes, and unla-
beled nodes, respectively. Moreover, they assign the same weight
(e.g., [76]) or weights learnt using node attributes (e.g., [9]) to edges.
Finally, they leverage random walk to propagate the reputation
scores in the weighted graph. In particular, they iteratively distrib-
ute a node’s current reputation score to its neighbors in proportion
to the edge weights, and a node sums the reputation scores from
its neighbors as the new reputation score. LBP-based methods of-
ten assign the same weight for all edges. Moreover, they model
the graph as a pairwise Markov Random Fields and leverage the
standard LBP to perform inference, which obtains the posterior
reputation scores. However, LBP has two well-known limitations:
not guaranteed to converge for loopy graphs and not scalable (be-
cause it maintains messages on each edge). LinLBP linearizes LBP to
address the two limitations. We will discuss details of LinLBP in Sec-
tion 3.1. LinLBP and LBP based methods were shown to outperform
RW-based methods [37, 66].

JWP [65] jointly learns edge weights and propagates reputation
scores. Given the current posterior reputation scores, JWP learns
edge weights such that 1) the labeled positive nodes and labeled
negative nodes have large and small posterior reputation scores in
the next iteration, respectively, and 2) an edge has a large weight if
the two corresponding nodes are predicted to have the same label
using its current posterior reputation scores, otherwise the edge



has a small weight. Given the learnt edge weights, JWP computes
the posterior reputation scores in the next iteration, e.g., using
LinLBP-based propagation. JWP outperforms LinLBP [65]. How-
ever, attacking JWP directly is challenging because JWP learns edge
weights. Specifically, when we insert fake edges to the graph or
delete existing edges, the impact of these inserted/deleted edges
on the classification of the attacker’s positive nodes relies on the
edge weights that need to be re-learnt by JWP. Therefore, we will
focus on attacking LinLBP and empirically show that our attacks
also transfer to RW-based methods, LBP-based methods, and JWP.

2.1.2 Graph Neural Network. These methods generalize neural
networks to graph data. In particular, they learn feature vectors for
nodes using neural networks and use them to classify nodes.

Some graph neural network methods [5, 38, 52, 69] learn the
node feature vectors and classify nodes simultaneously. Roughly
speaking, in these methods, neurons in the hidden layers of a neu-
ral network represent feature vectors of nodes, which are used to
classify nodes in the last layer of the neural network. The architec-
ture of the neural network is determined by the graph structure,
e.g., a neuron in a layer that models a certain node is connected
with the neurons in the previous layer that model the node’s neigh-
bors. In other words, the neural network iteratively computes a
feature vector of a node via aggregating the feature vectors of the
node’s neighbors. The neural network parameters are learnt via
minimizing a graph-based loss function on both labeled nodes in
the training dataset and the remaining unlabeled nodes. In particu-
lar, the graph-based loss function is small if nodes sharing the same
label have similar feature vectors and nodes having different labels
have distinct feature vectors. For instance, Graph Convolutional
Network (GCN) [38] leverages spectral graph convolutions [18]
in a neural network to learn feature vectors, and adopts a logistic
regression classifier in the last layer.

Some graph neural network methods [11, 29, 50, 60] first learn
feature vectors for nodes in an unsupervised learning fashion (also
known as graph embedding); then they use the feature vectors and
the training dataset to learn a standard binary classifier (e.g., logis-
tic regression); and finally they use the classifier to predict labels
for the unlabeled nodes. Different methods learn the feature vec-
tors using different techniques. For instance, DeepWalk [50] learns
feature vectors via generalizing the word to vector technique devel-
oped for natural language processing to graph data. In particular,
DeepWalk treats a node as a word in natural language, generates
node sequences (like sentences in natural language) using trun-
cated random walks, and leverages the skip-gram model [44] to
learn a feature vector for each node. LINE [60] learns nodes’ feature
vectors by preserving both first-order and second-order proximity,
where the first-order proximity captures the links in the graph (e.g.,
the first-order proximity between two nodes is 0 if they are not
connected) and the second-order proximity between two nodes
captures the similarity between their neighborhoods.

2.2 Adversarial Graph-based Machine Learning
Existing studies on adversarial machine learning mainly focused
on machine learning for non-graph data. In particular, studies have
demonstrated that machine learning is vulnerable to adversarial
examples [6, 12, 28, 31, 35, 42, 45, 48, 53, 55, 58, 71], poisoning

attacks [7, 19, 32, 39, 70, 73], privacy attacks for users (e.g., model
inversion attacks [20, 21], membership inference attacks [51, 54],
property inference attacks [3, 22]), as well as model parameter and
hyperparameter stealing attacks [62, 63].

Graph-based machine learning under adversarial setting is much
less explored. In particular, only a few studies [8, 15–17, 41, 57,
61, 77, 78] focused on adversarial graph-based machine learning.
For instance, Chen et al. [15] proposed a practical attack against
graph-based clustering, e.g., spectral clustering. Torkamani and
Lowd [61] proposed an attack to associative Markov network-
based classification methods. However, they considered that an
attacker manipulates up to a fixed number of binary-valued node
attributes instead of manipulating the graph structure. Several
work [8, 16, 57, 77, 78] proposed attacks to graph neural network
methods via inserting fake edges to the graph or deleting existing
edges. For instance, Zügner et al. [77] proposed an attack called
Nettack against GCN [38]. First, Nettack defines a graph structure
preserving perturbation, which constrains that the node degree
distributions of the graph before and after attack should be similar.
Then, Nettack learns a surrogate linear model of GCN. Finally, Net-
tack generates fake/deleted edges via maximizing a surrogate loss
function with respect to the graph structure, where the optimiza-
tion problem is subject to the node degree distribution constraint.
Several recent works [8, 78, 79] further studied attacks and defenses
for graph neural networks, which are concurrent to our work.

Our attack is designed for collective classification and is comple-
mentary to existing attacks that target graph neural networks.

3 BACKGROUND AND PROBLEM SETUP
3.1 Linearized Loopy Belief Propagation
Suppose we are given an undirected graph G = (V , E )1, where
u ∈ V is a node and (u, v ) ∈ E is an edge. |V | and |E | are the
number of nodes and edges, respectively. Moreover, we have a
training dataset L, which consists of a set of labeled positive nodes
LP and a set of labeled negative nodes LN . LinLBP [37] assigns the
prior reputation score qu for a node u as follows:

qu =




θ if u ∈ LP
−θ if u ∈ LN
0 otherwise,

(1)

where 0 < θ ≤ 1 is a parameter of LinLBP. LinLBP assigns the same
weightw in the interval (0, 0.5] for all edges. A larger weight means
that two linked nodes are more likely to have the same label. We
denote byA the adjacency matrix of the graph, and byW a |V |× |V |
matrix, every entry of which is the weight w . Then, the posterior
reputation scores in LinLBP are a solution of the following system:

p = q + A ⊙Wp, (2)

where q and p are the column vector of prior reputation scores
and posterior reputation scores of all nodes, respectively. ⊙ means
element-wise product of two matrices. We note that A ⊙W essen-
tially is the weight matrix of the graph. However, as we will see in
the next section, splitting the weight matrix into the element-wise
produce of A and W makes it easier to present our techniques to

1Our attacks can also be generalized to directed graphs.



solve the optimization problem that models our attack. The poste-
rior reputation scores are iteratively computed as follows:

p(t ) = q + A ⊙Wp(t−1), (3)

where p(t ) is the column vector of posterior reputation scores in
the t th iteration. When the posterior reputation scores converge, a
node u is predicted to be negative if its posterior reputation score
is negative, i.e., pu < 0. We note that LinLBP has two parameters,
i.e., the prior reputation score parameter θ and the edge weight w .

3.2 Threat Model
Attacker’s background knowledge: A LinLBP system is charac-
terized by three major components: parameters of LinLBP, a train-
ing dataset L, and a graph G = (V , E ). Therefore, we characterize
an attacker’s background knowledge along three dimensions:
• Parameter. This dimension characterizes whether the at-
tacker knows the parameters (i.e., θ and w ) of LinLBP.

• Training. This dimension characterizes whether the attacker
knows the training dataset.

• Graph. This dimension characterizes whether the attacker
knows the complete graph.

For convenience, we denote an attacker’s background knowledge
as a triple (Parameter, Training, Graph), where Parameter can be
Yes or No, Training can be Yes or No, and Graph can be Complete
or Partial. For instance, a triple (Yes, Yes, Complete) means that
the attacker (e.g., an insider) knows the parameters, the training
dataset, and the complete graph. An attacker knows its positive
nodes and edges between them. An attacker could also know a
subgraph of the negative nodes. For instance, in social networks, an
attacker can develop a web crawler to collect a partial social graph
of the negative nodes (i.e., normal users). We will empirically show
that our attack is still effective even if the attacker uses substitute
parameters, a substitute training dataset, and a partial graph.
Attacker’s capability: We consider an attacker can change the
graph structure, i.e., the attacker can insert fake edges to the graph
or delete existing edges. For instance, in social networks, an attacker
can create new edges among its created fraudulent users (positive
nodes) or remove existing edges between its created fraudulent
users. In addition, an attacker may also compromise normal users
(negative nodes) and create edges between the compromised users
and its fraudulent users. However, adding or removing different
edges may incur different costs for the attacker. For instance, in
the fraudulent user detection problem, adding an edge between
two fraudulent users requires a smaller cost than adding an edge
between a fraudulent user and a compromised normal user, as an
attacker usually needs an extra effort to compromise a normal user.
Thus, we associate a cost with inserting/deleting each edge, where
the costs may depend on different security applications. Moreover,
in certain applications, the maximum number of edges that can
be inserted/deleted for a node is bounded. For instance, in online
social networks, the number of friends (i.e., edges) a user can have
is often bounded. Thus, we introduce a parameter K , which is the
maximum number of edges that can be inserted/deleted for a node.
Attacker’s goal: Suppose an attacker has some selected positive
nodes (e.g., malware, fraudulent user, fake review), which we call
target nodes. We consider the attacker’s goal is to make the target

nodes evade the detection of LinLBP. Specifically, the attacker aims
to manipulate the graph structure with a minimal total cost such
that LinLBP misclassifies the target nodes to be negative. In other
words, the attacker’s goal is to achieve a high False Negative Rate
(FNR) for its target nodes via manipulating the graph structure with
a minimal total cost. We note that the target nodes may be a subset
of the positive nodes under the attacker’s control.

3.3 Problem Definition
Given our threat model, we formally define our problem as follows:

Definition 3.1 (Attack to LinLBP). Given some target nodes, at-
tacker’s background knowledge, cost of inserting/deleting each
edge, and the maximum number of inserted/deleted edges for each
node, an attack to LinLBP is to manipulate the graph structure with
a minimal total cost such that LinLBP achieves a as high FNR for
the target nodes as possible.

4 OUR ATTACKS
We first discuss our attacks under the threat model where the
attacker has full knowledge, i.e., the attacker knows the parameters
of LinLBP, the training dataset, and the complete graph. Then,
we adjust our attacks to the scenarios where the attacker only
has partial knowledge about the parameters, the training dataset,
and/or the graph.

4.1 Adversary with Full Knowledge

Overview: We first formulate our attack as an optimization prob-
lem. Specifically, we associate a binary variable with each pair of
nodes, where a binary variable has a value of 1 if and only if our
attack changes the connection state between the corresponding two
nodes. The objective function of the optimization problem is the to-
tal cost of manipulating the graph structure and the constraints are
1) FNR=1 for the attacker’s target nodes and 2) the maximum num-
ber of inserted/deleted edges per node is bounded by K . However,
it is computationally challenging to solve the optimization problem
because it is a binary optimization problem that hasO ( |V |2) binary
variables and the constraint FNR=1 is highly nonlinear.

To address the challenges, we propose techniques to approxi-
mately solve the optimization problem. Specifically, we relax the
binary variables to continuous variables whose values are in the
interval [0, 1] and convert them to binary values after solving the
optimization problem; and we reduce the optimiztion to the binary
variables that are related to the attacker’s target nodes. Moreover,
we translate the constraint FNR=1 to be a constraint on the pos-
terior reputation scores of the attacker’s target nodes and add the
constraint to the objective function using Lagrangian multipliers.
However, the converted optimization problem still faces a compu-
tational challenge because the posterior reputation scores depend
on the graph structure (i.e., the continuous variables in the op-
timization problem) in a complex way, i.e., each variable could
influence the posterior reputation score of each node. To address
the challenge, we propose to alternately optimize the continuous
variables in the optimization problem and compute the posterior
reputation scores. Our key idea is that posterior reputation scores



are computed iteratively. Instead of using the final posterior repu-
tation scores, we use the intermediate posterior reputation scores
to optimize the continuous variables in the optimization problem.
Formulating our attack as an optimization problem: We as-
sociate a binary variable Buv with each pair of nodes u and v .
Buv = 1 if our attack changes the connection state between u and
v , otherwise Buv = 0. Specifically, if u and v are already connected
in the original graph, then Buv = 1 if our attack deletes the edge
between u and v ; if u and v are not connected in the original graph,
then Buv = 1 if our attack inserts an edge between u and v . As
we discussed in our threat model in Section 3.2, inserting/deleting
different edges may incur different costs for the attacker. Therefore,
we associate a variable Cuv with each pair of nodes u and v to
represent the cost of modifying the connection state between u and
v . In particular, Buv = 1 incurs a cost Cuv for the attacker. There-
fore, the total cost of an attack is ∑u,v∈V ,u<v BuvCuv , where V is
the set of nodes in the graph and the constraint u < v essentially
means that we count once for each pair of nodes. We note that,
for the same node pair, we could also associate different costs for
inserting an edge and deleting the existing edge between them. Our
method is also applicable for such fine-grained cost. However, for
simplicity, we use the same cost for inserting/deleting an edge.

The attacker has a set of selected target nodes T and aims to
achieve a high FNR (i.e., FNR=1 in our formulation) for the target
nodes with a minimal total cost. Formally, our attack aims to find
the variables Buv via solving the following optimization problem:

min
B

∑
u,v∈V ,u<v

BuvCuv , (4)

s.t. FNR = 1, (5)
Buv ∈ {0, 1}, for u, v ∈ V , (6)∑
v

Buv ≤ K, for u ∈ V , (7)

where the symmetric matrix B includes all the binary variables
for each pair of nodes, the objective function is the total cost, the
first constraint means all target nodes are misclassified as nega-
tive, the second constraint means the variables in the optimization
problem are binary, and the third constraint means the maximum
number of inserted/deleted edges for each node is bounded by K .
For convenience, we call the matrix B adversarial matrix.

Challenges for solving the optimization problem: Solving the
optimization problem in Equation 4 exactly faces several challenges.
First, the variables Buv are binary. Second, the optimization problem
has |V |( |V | − 1)/2 binary variables. Third, the constraint FNR=1 is
highly nonlinear.

Our techniques for approximately solving the optimization
problem:We propose several approximation techniques to address
the challenges. To address the first challenge, we relax Buv to a
continuous variable whose value is in the interval [0, 1] and convert
it to a binary value after solving the optimization problem.

In practice, it is often expensive to modify the connection states
between negative nodes not under the attacker’s control. Thus, to
address the second challenge, we reduce the optimization space to
the edges between the attacker’s target nodes and the remaining
nodes and the edges between the target nodes. Specifically, we solve
the optimization problem over the variables related to the attacker’s
target nodes, i.e., the variables Buv where u ∈ T , v ∈ V − T and

Buv where u, v ∈ T , u < v , where the first set of variables char-
acterize the connection states between the target nodes and the
remaining nodes while the second set of variables characterize the
connection states between the target nodes.

Recall that a node is predicted to be negative if its posterior rep-
utation score is negative. Therefore, to address the third challenge,
we replace the constraint FNR=1 as the constraint pu < 0 for each
u ∈ T . Moreover, we convert the constraint on posterior reputa-
tion scores to the objective function via Lagrangian multipliers.
Summarizing our approximation techniques, we aim to solve the
following optimization problem:

min
B
F (B) =

∑
u∈T ,v∈V−T

BuvCuv +
∑

u,v∈T ,u<v

BuvCuv + λ
∑
u∈T

pu (8)

s.t. Buv ∈ [0, 1], for u ∈ T , v ∈ V (9)∑
v

B̄uv ≤ K, for u ∈ V (10)

where λ > 0 is a Lagrangian multiplier, B̄uv is the binarized value
of the continuous variable Buv , and the posterior reputation scores
are a solution of the following system:

p = q + |A − B̄ | ⊙Wp, (11)

where A is the adjacency matrix of the original graph, B̄ is the
binarized adversarial matrix, andW is a matrix with every entry as
the edge weight w . |A − B̄ | essentially is the adjacency matrix of
the graph after our attack.

A popular method to solve the above optimization problem is to
use gradient descent. However, it is still computationally challeng-
ing because the posterior reputation scores depend on the variables
B̄ in a complex way, i.e., every variable Buv influences each pos-
terior reputation score according to the system in Equation 11.
To address the challenge, we propose to alternately optimize the
variables in the optimization problem and compute the posterior
reputation scores. Our key insight is that posterior reputation scores
are iteratively computed. Instead of using the final posterior reputa-
tion scores, we use the intermediate posterior reputation scores to
solve the optimization problem. Then, given the intermediate vari-
ables Buv , we update the posterior reputation scores. Specifically,
we repeat the following two steps.

Step I: updating posterior reputation scores. We update the
posterior reputation scores in the t th iteration using the adversarial
matrix B̄(t−1) in the (t − 1)th iteration as follows:

p(t ) = q + |A − B̄(t−1) | ⊙Wp(t−1) . (12)

Step II: updating adversarial matrix. In this step, we update
the adversarial matrix in the t th iteration while fixing the poste-
rior reputation scores in the t th iteration. For convenience, we
transform the optimization problem in Equation 8 to the following
optimization problem:

min
B(t )
F (B(t ) ) =

∑
u∈T

b(t )u cTu + λ
∑
u∈T

p (t+1)
u (13)

s.t. b(t )u ∈ [0, 1], for u ∈ T (14)∑
v

B̄ (t )
uv ≤ K, for u ∈ V (15)

where b(t )u is the uth row of the matrix B(t ) (i.e., the modified con-
nection states between a node u and the remaining nodes), cu is
the adjusted uth row of the cost matrix C, T is transpose of a vec-
tor, and p(t+1) = q + |A − B̄(t ) | ⊙Wp(t ) . Specifically, cuv = Cuv if
u ∈ T and v < T , while cuv = Cuv /2 if u, v ∈ T (because each



pair of nodes between the target nodes in T is counted twice in
the objective function in Equation 13).

We use a projected gradient descent to solve the optimization prob-
lem in Equation 13. Specifically, we iteratively apply the following
steps for each target node u :

s(i+1)u = b̃(i )u − η
∂F (B̃(i ) )

∂b̃(i )u
, (16)

b̃(i+1)u = proj
(
s(i+1)u

)
, (17)

where the first equation means we update the variables b̃u using
gradient descent and the second equation means that we project
the variables to satisfy the two constraints in Equation 14 and
Equation 15. Note that the variables b̃u are initialized using the
adversarial matrix in the (t − 1)th iteration, i.e., b̃(0)u = b̄(t−1)u . Specif-
ically, the gradient can be computed as follows:

∂F (B̃(i ) )

∂b̃(i )u
= cu + λ

∂p (t+1)
u

∂b̃(i )u
= cu + λsign(b̃(i )u − au ) ⊙ wuP(t ), (18)

where au is the uth row of the adjacency matrix, the sign operator
applies to every entry of the vector b̃(i )u − au , and P(t ) is a diagonal
matrix with the diagonal elements P (t )

u,u = p
(t )
u . Note that when

computing the gradient, we approximate B̄ as B̃ in the computation
of p(t+1) . Moreover, the operator proj is defined as follows:

proj(s(i+1)u ) = argmin
0≤b̃(i+1)u ≤1, b̃(i+1)u 1T ≤K

∥b̃(i+1)u − s(i+1)u ∥22, (19)

which means that the proj operator aims to find a vector b̃(i+1)u that
is the closest to the vector s(i+1)u in terms of Euclidean distance
and that satisfies the constraint 0 ≤ b̃(i+1)u ≤ 1 and a relaxed con-
straint b̃(i+1)u 1T ≤ K on the maximum number of inserted/deleted
edges for node u . The optimization problem in Equation 19 can be
solved exactly by the break point search method [75]. We repeat the
Equation 16 and 17 multiple iterations to solve b̃u . However, more
iterations make our method less efficient. In our experiments, we
repeat 4 iterations to solve b̃u as we find that 4 iterations achieve a
good trade-off between accuracy and efficiency.

After solving b̃u with 4 iterations, we convert them to be binary
values. Specifically, we first convert each b̃uv to 1 if b̃uv > 0.5
and 0 otherwise. Then, we select the largest K entries in b̃u and
convert them to be 1, while we convert the remaining entries in the
vector to be 0. Finally, we assign the converted binary vector as the
corresponding row b̄(t )u in the adversarial matrix in the t th iteration.
Note that such converted adversarial matrix may not be symmetric
for the targeted nodes. Specifically, we may have B̄uv , B̄vu for
a pair of target nodes u and v . Therefore, we perform another
postprocessing for the edges between target nodes. Specifically, we
set B̄uv = B̄vu ← B̄uv · B̄vu , i.e., we modify the connection state
between u and v only if both B̄uv = 1 and B̄vu = 1.
Computational complexity: We first analyze the time complex-
ity in one iteration. In Step I, updating posterior reputation scores
traverses all edges in the graph and the time complexity is O ( |E |).
In Step II, for each target node u ∈ T , updating s(i+1)u in Equa-
tion 16 traverses all nodes and requires a time complexity O ( |V |);
and the proj operator requires a time complexityO ( |V | log |V |) [75].
Therefore, computing the adversarial matrix B̄(t ) in the t th iteration
requires a time complexity of O (m |T | |V | log |V |), wherem is the
number of iterations used to compute b̃u . Suppose we alternate

Table 1: Dataset statistics.

Dataset #Nodes #Edges Ave. degree
Facebook 4,039 88,234 44
Enron 33,696 180,811 11

Epinions 75,877 811,478 21
Twitter 21,297,772 265,025,545 25

between Step I and Step II for n iterations, then the total time
complexity is O (n ( |E | +m |T | |V | log |V |)).

4.2 Adversary with Partial Knowledge
Parameter=No, Training=Yes, Graph=Complete: When the
attacker does not know the parameters of LinLBP, i.e., the prior
reputation score parameter θ and/or the edge weightw , the attacker
can randomly select parameters from their corresponding domains
(0 < θ ≤ 1 and 0 < w ≤ 0.5) as the substitute parameters. Then, the
attacker uses our attack with the substitute parameters to generate
the inserted fake edges and deleted existing edges.
Parameter=Yes, Training=No, Graph=Complete: The attacker
can sample a substitute training dataset from the original graph
when the attacker does not have the training dataset used by the
LinLBP. Specifically, the attacker knows its positive nodes. There-
fore, the attacker can sample some nodes from its positive nodes as
labeled positive nodes in the substitute training dataset. Moreover,
the attacker can sample some nodes from the nodes that are not its
positive nodes as labeled negative nodes. Then, the attacker applies
our attack using the substitute training dataset to generate inserted
fake edges and deleted existing edges.
Parameter=Yes, Training=Yes, Graph=Partial: The attacker at
least knows its positive nodes and edges between them. Suppose the
attacker also knows a subgraph of the negative nodes. For instance,
in online social networks, the attacker can develop a web crawler
to collect at least a partial social graph of the negative nodes (i.e.,
normal users). Then, the attacker applies our attack on the partial
graph, which includes the subgraph of the positive nodes and the
subgraph of the negative nodes, to generate inserted fake edges
and deleted existing edges.
Parameter=No, Training=No, Graph=Partial: In this scenario,
the attacker has the least knowledge of a LinLBP system. The at-
tacker uses the substitute parameters, samples a substitute training
dataset, and leverages the partial graph to perform our attack.

5 EVALUATION
5.1 Experimental Setup
Dataset description: We use three real-world graphs with syn-
thesized positive nodes and a large-scale Twitter graph with real
positive nodes to evaluate our attacks (See Table 1). We adopt three
graphs with synthetic positive nodes in order to study our attacks
for graphs with different properties, e.g., size, average degree, etc..

1) Graphs with synthesized positive nodes.We use three real-
world graphs that represent different security applications. We
obtained the largest connected component of each graph from
SNAP (http://snap.stanford.edu/ data/index.html). The three graphs
are Facebook (4,039 nodes and 88,234 edges), Enron (33,696 nodes



and 180,811 edges), and Epinions (75,877 nodes and 811,478 edges),
respectively. In the Facebook graph, a node represents a user; two
users are connected if they are friends to each other; a node is
negative if it is a normal user; and a node is positive if it is a
malicious user. In the Enron graph, a node represents an email
address; an edge between two nodes indicates that at least one email
was exchanged between the two corresponding email addresses;
a node is negative if it is a normal email address; and a node is
positive if it is a spamming email address. Epinions was a general
review site, which enables users to specify which other users they
trust. In the Epinions graph, a node represents a reviewer; an edge
between two nodes indicates that they trust each other; negative
means a normal reviewer; and positive means a fake reviewer.

The nodes in a graph are negative nodes and thus we synthesize
positive nodes.We follow previous studies (e.g., [2, 25, 67]) on graph-
based security analytics to synthesize positive nodes. Specifically, to
avoid the impact of structural differences between negative nodes
and positive nodes, we replicate the negative nodes and their edges
as positive nodes and edges in each of the three graphs. Moreover,
we assume an attacker has already inserted some edges between
positive nodes and negative nodes, which we call attack edges, to
make positive nodes connected with negative nodes.

2) Twitter graph with real positive nodes. We obtained an
undirected Twitter dataset with real postive nodes (fraudulent users)
from Wang et al. [67]. Specifically, the Twitter network has 21M
users, 265M edges, where 18M edges are attack edges, and an aver-
age degree of 25. An undirected edge (u, v ) means that user u and
user v follow each other. A user suspended by Twitter is treated as
a fraudulent user (positive node), while an active user is treated as
benign (negative node). In total, 145,183 nodes are fraudulent users,
2,566,944 nodes are benign, and the remaining nodes are unlabeled.
Training dataset and testing dataset: For each graph with syn-
thesized positive nodes, we randomly select 100 positive nodes
and 100 negative nodes to form a training dataset. For the Twitter
graph, we sample 3,000 positive nodes and 3,000 negative nodes
uniformly at random as the training dataset, due to its large size.
The remaining labeled nodes form a testing dataset. We use a small
training dataset because graph-based classification assumes so.
Attacker’s target nodes: An attacker aims to maintain some pos-
itive nodes (called target nodes) that evade detection. The target
nodes could be a subset of the positive nodes, i.e., the attacker uses
some other positive nodes to support the target nodes. The attacker
could use different ways to select the target nodes. We consider the
following three ways:

1) RAND: In this method, the attacker samples some positive
nodes uniformly at random as the target nodes.

2) CC: The attacker selects a connected component of positive
nodes as the target nodes. Specifically, the attacker first randomly
picks a positive node as target node. Then, the attacker uses breadth
first search to find other target nodes.

3) CLOSE: The attacker samples some positive nodes that are
close to negative nodes. In particular, we adopt a variant of closeness
centrality in network science to measure the closeness between a
positive node and the negative nodes. Specifically, for a positive
node, we compute the inverse of the sum of the distances between
the positive node and all negative nodes as the closeness centrality

of the positive node. Then, the attacker selects the positive nodes
that have large closeness centrality as the target nodes.

The target nodes selected by CC are more structurally similar. If
one of them evades detection, then others are also likely to evade.
The target nodes selected by CLOSE could also evade detection, as
they are close to negative nodes. Thus, we expect that our attacks
are more effective when the target nodes are selected by CC and
CLOSE than by RAND.
Simulating costs: We associate a cost of modifying the connec-
tion state for each pair of nodes. While the costs are application-
dependent, we simulate multiple scenarios in our experiments.

1) Equal cost: In this scenario, modifying the connection state
for any pair of nodes has the same cost for the attacker. In particular,
we assume the cost to be 1. We note that a recent attack called
Nettack [77] for GCN essentially assumes the equal cost.

2) Uniform cost: We assume the costs for different node pairs
are uniformly distributed among a certain interval. In particular,
for each node pair, we sample a number from the interval as the
cost of modifying the connection state between the node pair. In
our experiments, we consider [1, 10] as the interval.

3) Categorical cost: In this scenario, we categorize node pairs
into different groups and assign the same cost for each group. Specif-
ically, it is easy for an attacker to insert edges between the positive
nodes or remove existing edges between them. Therefore, we as-
sociate a small cost (i.e., 1 in our experiments) with modifying
the connection state between two positive nodes. In practice, the
attacker could have compromised some negative nodes, e.g., the
attacker compromised some normal users in social networks via
stealing their credentials through social engineering attacks. It is
relatively easy for the attacker to modify the connection states
between the compromised negative nodes and the positive nodes.
However, it incurs costs for the attacker to compromise the neg-
ative nodes. Therefore, we associate a modest cost (i.e., 10) with
modifying the connection state between a compromised negative
node and a positive node. Finally, it is relatively hard for the at-
tacker to modify the connection state between positive nodes and
the remaining negative nodes that are not compromised, because
the attacker has to bribe or compromise them to establish mutual
connections between them and the positive nodes. Therefore, we
associate a large cost (i.e., 100) with modifying the connection state
between a positive node and an uncompromised negative node.
Note that our attack does not change the connection states between
negative nodes, so the costs for them do not affect our attack. We
randomly sample 100 negative nodes as the compromised ones.

We stress that the specific cost values (e.g., 1, 10, 100) may not
have semantic meanings. We just use them to simulate different
scenarios and indicate different costs of manipulating different
types of edges.
Baseline attacks:We compare with two baseline attacks: Random
attack and Del-Add attack. We will also compare with a recent
attack [77] designed for GCN in Section 5.5.

Random attack: We randomly modify the connection states
between the target nodes and other nodes. Specifically, for each
target node u , we randomly select K nodes and we modify the
connection state between u and each selected node. If u and a
selected node are connected in the original graph, then we delete
the edge between them, otherwise we insert an edge between them.



Table 2: Results of our attacks and the baseline attacks in different scenarios. The column “#Edges” shows the number of edges
modified by our attack; the column “#Add/#Del” shows the respective number of inserted edges and deleted edges; and the
column “Cost” shows the total cost of our attack. FNR is the fraction of target (positive) nodes misclassified as negative nodes.
Our attacks can substantially increase the FNRs and significantly outperform the baseline attacks.

RAND

Dataset No attack Random attack Del-Add attack Equal Uniform Categorical
FNR FNR FNR FNR #Edges #Add/#Del Cost FNR #Edges #Add/#Del Cost FNR #Edges #Add/#Del Cost

Facebook 0 0.04 0.39 0.78 1960 1855/105 1960 0.66 1988 1853/135 2082 0.60 1891 1884/7 19342
Enron 0 0.06 0.67 1.00 2000 2000/0 2000 0.96 1998 1993/5 2193 0.89 1884 1879/5 19257

Epinions 0 0.03 0.73 0.98 2000 1931/69 2000 0.94 2000 1995/5 2078 0.92 1971 1971/0 30010
Twitter 0 0.02 0.40 0.85 1966 1566/400 1966 0.85 1942 1530/412 2326 0.82 1855 1666/189 26550

CC

Dataset No attack Random attack Del-Add attack Equal Uniform Categorical
FNR FNR FNR FNR #Edges #Add/#Del Cost FNR #Edges #Add/#Del Cost FNR #Edges #Add/#Del Cost

Facebook 0 0.02 0.43 0.94 1980 1747/233 1980 0.94 1996 1858/138 2184 0.68 1934 1540/394 25349
Enron 0 0.03 0.76 1.00 2000 2000/0 2000 0.99 2000 2000/0 2820 0.92 1764 1497/267 18237

Epinions 0 0.02 0.63 0.99 2000 1886/114 2000 0.94 2000 1993/7 2128 0.88 2000 1749/251 17741
Twitter 0 0.02 0.43 0.88 1997 1976/21 1997 0.86 1990 1906/84 3102 0.85 1969 1858/111 29800

CLOSE

Dataset No attack Random attack Del-Add attack Equal Uniform Categorical
FNR FNR FNR FNR #Edges #Add/#Del Cost FNR #Edges #Add/#Del Cost FNR #Edges #Add/#Del Cost

Facebook 0 0.02 0.31 0.96 2000 1455/545 2000 0.93 1980 1385/595 2076 0.69 1983 1759/224 27124
Enron 0 0.02 0.47 1.00 2000 1828/172 2000 1.00 2000 1942/58 3781 0.90 1705 1705/0 21705

Epinions 0 0.02 0.56 1.00 2000 1960/40 2000 0.96 2000 1992/8 3854 0.86 1997 1651/346 21252
Twitter 0 0.01 0.52 0.87 1956 1774/182 1956 0.85 1942 1748/194 4204 0.83 1872 1728/144 27440

Del-Add attack: Suppose a target node is connected with d
positive nodes. If d > K , then we randomly delete K edges between
the target node and its connected positive nodes, otherwise we first
delete d edges between the target node and its connected positive
nodes and then we add edges between the target node and (K − d )
randomly selected negative nodes. The intuition of the Del-Add
attack is that target nodes, which are sparsely connected with other
positive nodes and densely connected with negative nodes, are
likely to be misclassified as negative nodes.
Parameter setting:We set the Lagrangianmultiplier λ as λ=10,000
for Categorical cost and λ=1,000 for the other two types of costs,
considering their different magnitude of cost values. We set the
learning rate η = 0.1 in our attack. We also explore the impact of
λ and η and show the results in Figure 4. Without otherwise men-
tioned, we add 10K attack edges (AE) between negative nodes and
positive nodes uniformly at random in each graph with synthesized
positive nodes. Moreover, we assume CC as the method of selecting
target nodes, 100 target nodes, K=20 (i.e., the number of modified
edges is bounded by 20 per node), and Equal cost (as previous at-
tacks [16, 57, 77] used this cost). For LinLBP, we set θ = 0.5 and
w = 0.01. We implement our attack against LinLBP [67] in C++. We
obtain the publicly available C++ source code for LinLBP from the
authors [67]. We perform all our experiments on a Linux machine
with 512GB memory and 32 cores.

Our attack alternately performs Step I and Step II. In our ex-
periments, we check the FNR of the target nodes in each iteration
and stop the algorithm when it does not change in two consecutive
iterations or we reached the predefined maximum number of iter-
ations, e.g., 10 in our experiments. We found the FNR converges
within 10 iterations in our experiments.

5.2 Evaluation with Full Knowledge
We first evaluate our attacks in the threat model where the attacker
knows the parameters of LinLBP, the training dataset, and the
complete graph. There are seven parameters that could affect our
attack performance. The seven parameters are: cost type (Equal
cost, Uniform cost, and Categorical cost), the method used to select
target nodes (RAND, CC, and CLOSE), the number of attack edges,
the number of target nodes, maximal number of modified edges
K per target node, the hyperparameter λ, and the hyperparameter
η. When studying the impact of a specific parameter, we fix the
remaining parameters to their default values. Next, we first show
an overall result that demonstrates the effectiveness of our attacks.
Then, we study the impact of each parameter.
Our attacks are effective and significantly outperform the
baseline attacks: Table 2 shows the results of our attacks and the
baseline attacks on the four graphs for each method of selecting the
target nodes and each type of cost. First, our attacks are effective.
Specifically, in most scenarios, our attacks increase the FNR from
0 to be above 0.85. Moreover, our attacks are significantly more
effective than the Random attack and Del-Add attack. In particular,
our attacks have 0.2 to 0.6 higher FNRs than the best attack per-
formance of the baseline attacks on the four graphs. Second, our
attacks use much more inserted edges than deleted edges. A possi-
ble reason is that the graphs are sparse, i.e., only a small fraction
of node pairs are connected in the original graphs. Therefore, the
space of inserting edges is much larger than the space of deleting
edges, leading our attacks to generate much more inserted edges.
Overall, our attacks are the least effective on Facebook, i.e., our
attack achieves a lowest FNR for Facebook given the same method
of selecting target nodes and the same cost type. The reason is that
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Figure 1: Impact of K on our attacks on the four graphs. We observe that our attacks are more effective as K increases.

Facebook has the largest average degree (see Table 1). With the
same maximum number (i.e., K = 20) of modified edges per node,
Facebook can better tolerate our attacks.
Impact of different types of costs: The results in Table 2 allow
us to compare different types of costs. We observe that our attacks
are the most effective for Equal cost and the least effective for
Categorical cost. The reason is that Equal cost gives our attack
the most flexibility at generating the inserted edges and deleted
edges. However, for the Categorical cost scenario, it is much more
expensive to modify edges between target nodes and compromised
negative nodes; and it is even more expensive to modify edges
between target nodes and uncompromised negative nodes. These
cost constraints essentially restrict the search space of our attacks,
making our attacks less effective for Categorical cost. However, we
want to stress that our attacks are still effective for Categorical cost,
e.g., on the Enron, Epinions, and Twitter graphs, our attacks still
increase the FNR to be around 0.85. Furthermore, Table 3 shows
the number of overlapped modified edges among the 3 types of
costs. We observe that the number of overlapped modified edges is
much smaller than the number of modified edges shown in Table 2,
indicating that our attack indeed explores different search spaces
for different types of costs.
Impact of different target node selectionmethods: The results
in Table 2 also compare RAND, CC, and CLOSE for selecting target
nodes. We observe that our attacks are more effective when using
CC and CLOSE than using RAND to select the target nodes, and CC
and CLOSE have similar attack performance. Specifically, given the
same graph and cost type, our attack achieves a higher FNR for CC
and CLOSE than for RAND. For instance, with the Facebook graph
and Equal cost, our attacks achieve FNRs of 0.78, 0.94, and 0.96 for
RAND, CC, and CLOSE, respectively. The reason is that the target
nodes selected by CC are structurally close and similar. Therefore, it
is more likely for our attacks to make them evade detection “collec-
tively”. Moreover, the target nodes selected by CLOSE are close to
negative nodes and thus they are relatively easy to bypass detection.
However, the target nodes selected by RAND are more structurally
dissimilar; different target nodes require different efforts (inserting
different edges or deleting different edges) to evade detection, and
thus it is harder for our attacks to make the target nodes evade.
Impact of K : Figure 1 shows the FNRs vs. K on the four graphs
with Equal cost and CC as the method of selecting target nodes.
The FNRs vs. K with Uniform cost and Categorical cost are shown
in Appendix (See Figure 10). Considering that the four graphs have
different average degrees, we set different ranges of K for the four

Table 3: Number of overlapped modified edges on different
types of costs and different target node selection methods.

RAND Equal vs. Uniform Equal vs. Categorical Uniform vs. Categorical
Facebook 28 0 11
Enron 94 0 12

Epinions 67 0 2
Twitter 361 17 259
CC Equal vs. Uniform Equal vs. Categorical Uniform vs. Categorical

Facebook 156 72 46
Enron 176 0 9

Epinions 191 67 10
Twitter 192 40 42
CLOSE Equal vs. Uniform Equal vs. Categorical Uniform vs. Categorical

Facebook 190 5 13
Enron 416 24 21

Epinions 428 260 147
Twitter 471 190 470

AE=1K AE=10K AE=20K AE=50K
0.90

0.95

1.00

F
N

R

Facebook
Enron
Epinions

Figure 2: Impact of the number of attack edges (AE) on the
three graphs with synthesized positive nodes for Equal cost.
We observe that as AE increases, FNR also increases.

graphs. We observe that as K increases, FNR also increases on all
the four graphs. This is because a larger K allows an attacker to
modify more edges per node, and thus our attacks can increase the
FNRs more. Note that the total costs increase linearly as K , and
thus we omit the results on the total cost for simplicity.
Impact of the number of attack edges (AE): Figure 2 shows
the FNRs vs. the number of attack edges on the three graphs with
synthesized positive nodes for Equal cost (note that the Twitter
graph has a fixed number of attack edges). The FNRs vs. AE for
Uniform cost and Categorical cost are shown in Appendix (See
Figure 8). We observe that as AE increases, our attacks achieve
higher FNRs. This is because the accuracy of collective classification
decreases asAE increases, even without our attacks. In other words,
when AE is large, the FNR of the positive nodes is already large
without our attacks.
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Figure 3: (a) Impact of the number of target nodeswith Equal
cost. We observe that FNRs are stable. (b) Costs with respect
to the number of target nodes. We observe that the costs are
linear to the number of target nodes.

Impact of the number of target nodes: Figure 3a shows the
FNRs vs. the number of target nodes on the four graphs, while
Figure 3b shows the total cost vs. the number of target nodes,
where Equal cost and CC are used. Due to the limited space, we
show the FNRs vs. the number of target nodes with Uniform cost
and Categorical cost in Appendix (See Figure 9). On one hand,
we observe that FNRs are stable across different number of target
nodes. This is because, for each target node, our attack iteratively
computes themodified edges. On the other hand, our attacks require
a larger total cost when the attacker uses more target nodes. Our
results indicate that, our attacks can make more positive nodes
evade detection when the attacker can tolerate a larger cost.
Impact of hyperparameters: Figure 4 shows the impact of λ and
η on our attacks in the four graphs with Equal cost, where the
curves for Enron and Epinions overlap. The impact of λ and η on
our attacks with Uniform cost and Categorical cost are reported
in Appendix (See Figure 11 and Figure 12). We observe phase tran-
sition phenomena for both λ and η. Specifically, when λ and η
are larger than certain thresholds (e.g., 100 for λ and 0.01 for η
on Facebook), our attacks become effective. However, our attacks
are less effective or ineffective when λ and η are smaller than the
thresholds. Moreover, once λ and η are larger than the thresholds,
our attacks are insensitive to them, e.g., the FNRs are stable. Face-
book has smaller thresholds, and we speculate the reason is that
Facebook is much denser than the other three graphs.

5.3 Evaluation with Partial Knowledge
We consider multiple cases where the attacker does not have ac-
cess to the parameters of LinLBP, the training dataset, and/or the
complete graph. We only show results on the Epinions graph as we
observe similar patterns on the other three graphs, and the results
for the other three graphs are shown in Appendix. Our results show
that our attacks can still effectively increase the FNRs for the target
nodes even if the attacker does not have access to the parameters
of LinLBP, the training dataset, and/or the complete graph.
Parameter=No, Training=Yes, Graph=Complete (Case 1): In
this case, the attacker does not know the parameters (i.e., θ and
w ) of LinLBP. The attacker randomly samples numbers from their
corresponding domains (i.e., 0 < θ ≤ 1, 0 < w ≤ 0.5) as the
substitute parameters and apply our attacks with them. Figure 5
shows the FNRs of our attacks with different substitute parameters
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Figure 4: Impact of λ and η on our attacks. We observe that
our attacks achieve stable FNRswhen λ and η are larger than
certain thresholds.
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Figure 5: FNRs of our attacks with different substitute pa-
rameters of LinLBP on Epinions.
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Figure 6: (a) FNRs vs. size of the substitute training dataset
on Epinions; (b) FNRs when the attacker knows τ% of the
negative nodes and edges between them on Epinions.

on Epinions, wherew = 0.01when exploring different θ in Figure 5a
and θ = 0.5 when exploring different w in Figure 5b. The FNRs of
our attackswith different substitute parameters on Facebook, Enron,
and Twitter are shown in Figure 13, Figure 14, and Figuer 15 in
Appendix, respectively. We observe that our attacks are insensitive
to θ . Moreover, our attacks are more effective when the substitute
weight parameter is closer to the true weight. Specifically, the true
weight is 0.01. Our attacks achieve FNRs that are close to 1 when the
substitute weight is around 0.01, and FNRs decrease as the substitute
weight increases. However, even if the substitute weight is far from
the true weight, our attacks are still effective. For instance, the FNR
is still 0.88 when our attack uses 0.5 as the substitute weight.
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Figure 7: FNRs of our attacks vs. (a) substitute edge weight; (b) size of the substitute training dataset; (c) fraction of negative
nodes on Epinions when the attacker uses substitute parameters, substitute training dataset, and a partial graph.

Parameter=Yes, Training=No, Graph=Complete (Case 2): In
this case, the attacker does not know the true training dataset used
by LinLBP. However, the attacker knows the positive nodes as they
were created by itself and the negative nodes as well. Therefore, the
attacker can sample some positive nodes as labeled positive nodes
and sample equal number of negative nodes as labeled negative
nodes, which are used as a substitute training dataset. Then, the
attacker applies our attack using the substitute training dataset.
Figure 6a shows the FNRs as a function of the size of the substitute
training dataset on the Epinions graph. The FNRs vs. size of the
substitute training dataset on Facebook, Enron, and Twitter are
displayed in Figure 16a, 16b, and 16c in Appendix, respectively. We
observe that as the size of the substitute training dataset increases,
the FNRs of our attacks first increase dramatically and then increase
slowly until reaching to the FNRs in the full knowledge scenario.
Parameter=Yes, Training=Yes, Graph=Partial (Case 3): In this
scenario, the attacker knows the subgraph of positive nodes and
their edges as well as a connected subgraph of some negative nodes
and edges between them. Specifically, we consider the attacker
knows τ% of the negative nodes. In particular, we randomly select a
negative node and span a connected component that includes τ% of
the negative nodes via breadth first search. Then, the attacker’s par-
tial graph consists of the connected component of negative nodes,
positive nodes, and the edges between them. The attacker applies
our attacks using this partial graph to generate the inserted/deleted
edges. Note that LinLBP still detects positive nodes using the orig-
inal complete graph with the edges modified by our attacks. Fig-
ure 6b shows the FNRs of our attacks as the attacker knows a larger
subgraph of negative nodes (i.e., τ% is larger) on Epinions. The
FNRs vs. τ% of negative nodes on Facebook, Enron, and Twitter are
shown in Figure 17a, 17b, and 17c in Appendix, respectively. We
observe that as τ increases, our attacks are more effective. More-
over, when the attacker only knows 20% of negative nodes, our
attacks can obtain FNRs close to those when the attacker knows
the complete graph.

Parameter=No, Training=No, Graph=Partial (Case 4): In this
case, the attacker knows the least knowledge of the three dimensions
of a LinLBP system. To study our attacks in this case, we fix two
dimensions and observe FNR vs. the third dimension. By default,
we assume the attacker knows 20% of negative nodes and edges
between them, samples a substitute training dataset with 400 nodes

Table 4: Transferability of our attacks to other graph-based
classification methods on Facebook.

RAND
Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.78 0.66 0.6
JWP 0 0.76 0.63 0.59
LBP 0.07 0.7 0.65 0.6
RW 0.13 0.68 0.61 0.55

Graph
Neural Network

LINE 0.07 0.61 0.61 0.45
DeepWalk 0.25 0.55 0.52 0.52
node2vec 0.2 0.5 0.45 0.45

GCN 0.12 0.52 0.52 0.41
CC

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.94 0.94 0.68
JWP 0 0.93 0.93 0.63
LBP 0.01 0.92 0.92 0.64
RW 0.03 0.92 0.92 0.63

Graph
Neural Network

LINE 0.01 0.85 0.75 0.62
DeepWalk 0.04 0.71 0.65 0.45
node2vec 0.04 0.69 0.61 0.45

GCN 0.05 0.54 0.53 0.45
CLOSE

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.96 0.93 0.69
JWP 0 0.94 0.93 0.65
LBP 0.01 0.94 0.92 0.64
RW 0.04 0.93 0.92 0.63

Graph
Neural Network

LINE 0.01 0.86 0.77 0.59
DeepWalk 0.05 0.72 0.69 0.48
node2vec 0.05 0.77 0.69 0.50

GCN 0.05 0.54 0.53 0.42

on Facebook, Enron, and Epinions and 3,000 nodes on Twitter,
and has a substitute edge weight 0.05. Figure 7 shows FNRs of our
attacks on Epinions vs. each dimension. Figure 18, Figure 19, and
Figure 20 in Appendix show FNRs vs. each dimension on Facebook,
Enron, and Twitter, respectively. We observe similar patterns as in
Case 1, Case 2, and Case 3 (see Figure 5, Figure 6a, and Figure 6b),
respectively. The reason is that our attacks do not require the true
parameters, the true training dataset, nor the complete graph.

5.4 Transferring to Other Graph-based
Classification Methods

Our attacks generate inserted/deleted edges based on LinLBPmethod.
A natural question is: are our inserted/deleted edges also effective
for other graph-based classification methods? To answer this ques-
tion, we use our attacks to generate the modified edges based on
LinLBP, modify the graph structure accordingly, and apply another
graph-based classification method to detect the target nodes. Recall
that graph-based classification methods can be roughly categorized



Table 5: Comparing FNRs of our attack and Nettack for dif-
ferent graph-based classification methods on Facebook.

Method GCN LINE RW LBP JWP LinLBP Time

No attack 0.05 0.01 0.03 0.01 0 0 0 sec
Nettack 0.64 0.58 0.33 0.28 0.13 0.22 9 hrs

Our attack 0.54 0.85 0.92 0.92 0.93 0.94 10 secs

as collective classification and graph neural network. We consider
three representative collective classification methods, i.e., JWP [65],
LBP [25], and RW [66], and four representative graph neural net-
work methods, i.e., LINE [60], DeepWalk [50], node2vec [29], and
GCN [38]. We obtained source code of all these methods from their
corresponding authors.

Table 4 shows the effectiveness of our attacks at attacking the
considered graph-based classification methods on Facebook. The
results on Enron, Epinions, and Twitter are shown in Table 8, Ta-
ble 9, and Table 10 in Appendix, respectively. We make several
observations. First, our attacks are the most effective when using
LinLBP to detect the target nodes. Specifically, when using the same
method to select the target nodes and same cost type, our attacks
achieve the largest FNR for the target nodes when the detector
uses LinLBP. This is reasonable because our attacks generate the
modified edges based on LinLBP. Second, our attacks can transfer
to other graph-based classification methods, though the transfer-
ability varies among different graph-based classification methods.
Third, our attacks can better transfer to other collective classifica-
tion methods than other graph neural network methods in most
cases. For instance, with Equal cost and CC, our attacks achieve
≥ 0.92 FNRs for collective classification methods, while our attacks
achieve 0.85 and 0.54 FNRs for LINE and GCN, respectively. The rea-
son is collective classification methods and graph neural network
methods use different mechanisms to leverage the graph structure.
Fourth, our attacks have the least transferability to GCN, i.e., our
attacks achieve the smallest FNRs for GCN.We speculate the reason
is that GCN uses sophisticated graph convolution to exploit the
higher order correlations in the graph structure, and thus is more
robust to the modified edges our attacks generate.

5.5 Comparing with State-Of-The-Art Attack
We compare our attacks with state-of-the-art attack called Net-
tack [77] designed for GCN.
Nettack [77]: Nettack was designed to attack GCN [38]. Nettack
trains a surrogate linear model of GCN. Then, Nettack defines a
graph structure preserving perturbation, which constrains that the
node degree distribution of the graph before and after attack should
be similar. Nettack has two versions. One version only modifies
the graph structure, and the other version also modifies the node
attributes when they are available. We adopt the first version that
modifies the graph structure. We obtained the publicly available
source code of Nettack from the authors. Note that Nettack assumes
Equal cost for modifying connection states between nodes.
Our attack: It is designed based on LinLBP. We also assume Equal
cost to provide a fair comparison with Nettack.

Table 5 shows the FNRs and runtime of each attack for attack-
ing/transferring to different graph-based classification methods on
Facebook, where the target nodes are selected by CC. Note that, as
LINE outperforms DeepWalk and node2vec without attacks (see

Table 6: FPRs of our attacks on the three graphs with syn-
thesized positive nodes for Equal cost.

Dataset No attack RAND CC CLOSE
Facebook 0.01 0.09 0.11 0.11
Enron 0.01 0.04 0.03 0.03

Epinions 0 0.10 0.10 0.10

Table 4), we only show the transferability results of these attacks to
LINE for conciseness. We only show results on Facebook, because
Nettack is not scalable to the other three graphs. We note that the
compared attacks have the same costs, e.g., they all modify K edge
states for each target node. We have several observations.

First, for attacking GCN, Nettack is the most effective, i.e., Net-
tack achieves the highest FNR for attacking GCN. This is because
Nettack is specifically designed for GCN. Our attack can effectively
transfer to GCN, though our attack is slightly less effective than
Nettack at attacking GCN (0.54 vs. 0.64). Second, for attacking col-
lective classification methods, i.e., RW, LBP, JWP, and LinLBP, our
attack is much more effective than Nettack. Specifically, for all col-
lective classification methods, our attack achieves FNRs above 0.90.
However, Nettack only achieves FNRs ≤ 0.33. The reason is that
our attack is specifically designed for LinLBP and can well transfer
to other collective classification methods. Third, for attacking LINE,
our attack is more effective than Nettack. Specifically, our attack
achieves a FNR of 0.85, while Nettack achieves a FNR of 0.58. Fourth,
our attack is orders of magnitude faster than Nettack.

6 DISCUSSION AND LIMITATIONS
Attacks to other graph-based classification methods: In this
paper, we focus on designing attacks against LinLBP. The reason
is that LinLBP assigns the same weight to all edges, making our
formulated optimization problem easier to solve. In RW-based meth-
ods and JWP, the edge weights or propagation depend on the graph
structure. Therefore, it is harder to optimize the adversarial matrix,
because the gradient of the adversarial matrix also depends on the
edge weights, which are implicit functions of the adversarial ma-
trix. However, it is an interesting future work to study specialized
attacks for RW-based methods and JWP.
Unavailability attacks: In this paper, we focus on evasion attack
that aims to increase the FNR of an attacker’s target nodes. In prac-
tice, an attacker could also launch the unavailability attacks. In
particular, the attacker manipulates the graph structure to achieve
a high False Positive Rate (FPR). A high FPR means a large amount
of negative nodes are falsely classified as positive, which eventu-
ally makes the system unavailable and abandoned. We note that
although our attacks are specially designed to increase the FNR
of attacker’s target nodes, our attacks can also (slightly) increase
the FPR. Table 6 shows the FPRs of our attacks on the three graphs
with synthesized positive nodes. However, it is still an interesting
future work to design attacks to specifically increase the FPR.
Poisoning training dataset: Our work focuses on manipulating
the graph structure to attack graph-based classification methods.
An attacker could also poison the training dataset to attack graph-
based classification methods. Specifically, in some applications, the
training dataset is dynamically updated and obtained via crowd-
sourcing. For instance, in fraudulent user detection on social net-
works, a user could report other users as fraudulent users. Thus,



Table 7: Average clustering coefficients of target nodes be-
fore and after our attacks on the three graphs with synthe-
sized positive nodes for Equal cost.

Dataset RAND CC CLOSE
Facebook 0.492/0.464 0.540/0.492 0.591/0.573
Enron 0.567/0.549 0.634/0.632 0.559/0.554

Epinions 0.433/0.417 0.511/0.497 0.473/0.472

an attacker could flag normal users as fraudster, which poison the
training dataset. It is an interesting future work to poison the train-
ing dataset and compare the robustness of different graph-based
classification methods against training dataset poisoning attacks.
Countermeasures: Our work focuses on attacks to graph-based
classification methods. We discuss two possible directions for de-
fenses, and leave detailed exploration of these defenses as future
work. These defense ideas are inspired by existing defenses against
adversarial examples (e.g., [28, 43, 49]) and data poisoning attacks
(e.g., [4, 33, 56]). Generally speaking, we could prevent and/or de-
tect our attacks. In the prevention direction, we could explore new
graph-based classification methods that are more robust to graph
structure manipulation by design. In the detection direction, we
could design methods to detect the inserted fake edges and deleted
edges. For instance, we could extract features for each node pair
and train a binary classifier, which predicts whether the connection
state between the node pair was modified or not. However, when
designing such a detection method, we should also consider an
adaptive attacker who strategically adjusts its attacks to evade both
a graph-based classification method and the detector.

Moreover, an attacker could also analyze the local structure
of nodes to detect positive nodes. In particular, our attacks may
change the local structure of positive nodes after inserting/deleting
edges for them. For example, Table 7 shows the average clustering
coefficients of the target nodes before and after our attacks on the
three social graphs with synthesized positive nodes with Equal cost.
We observe that the clustering coefficients slightly decrease after
our attacks. This is because our attacks add neighbors to a target
node, but these neighbors may not be connected. It is an interesting
future work to explore the feasibility of such local structures to
detect positive nodes and our attacks.
Attacks to graph-level classification methods: In this paper,
our attacks focus on evading node-level classification methods. In
practice, graph-level classification methods have also been used
for security analytics. For example, several approaches [13, 24]
proposed to analyze and classify control-flow graphs for malware
detection. These approaches typically make predictions on the level
of graphs and hence our attacks are not applicable. We acknowledge
that it is an interesting future work to design attacks against graph-
level classification methods.

7 CONCLUSION AND FUTUREWORK
We perform the first systematic study on attacks to collective clas-
sification methods via manipulating the graph structure. We pro-
pose a threat model to characterize the attack surface of collective
classification methods, e.g., an attacker’s background knowledge
can be characterized along the Parameter, Training dataset, and
Graph dimensions. We show that our attack can be formulated as

an optimization problem, which can be solved approximately by
the techniques we propose. Our evaluation results on a large-scale
Twitter graph with real positive nodes and three graphs with syn-
thesized positive nodes show that our attacks can make collective
classification methods misclassify an attacker’s target nodes; our
attacks can transfer to graph neural network methods; our attacks
do not require access to the true parameters of LinLBP, the true
training dataset, and/or the complete graph; and our attacks outper-
form existing attacks for attacking collective classification methods
and certain graph neural network methods.

Interesting future work includes 1) designing specialized attacks
to other graph-based classification methods, 2) adjusting our at-
tacks as unavailability attacks, 3) designing training data poisoning
attacks to graph-based classification methods, 4) designing attacks
against graph-level classification methods, and 5) enhancing ro-
bustness of graph-based classification methods.
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Table 8: Transferability of our attacks to other graph-based
classification methods on Enron.

RAND
Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 1.00 0.96 0.89
JWP 0 0.97 0.96 0.86
LBP 0.02 0.96 0.96 0.89
RW 0.05 0.95 0.95 0.89

Graph
Neural Network

LINE 0.06 0.94 0.92 0.85
DeepWalk 0.25 0.6 0.58 0.5
node2vec 0.23 0.6 0.59 0.5

GCN 0.22 0.49 0.49 0.45
CC

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 1.00 0.99 0.92
JWP 0 1.00 0.98 0.89
LBP 0 1.00 0.91 0.85
RW 0.04 1.00 0.97 0.81

Graph
Neural Network

LINE 0.04 0.98 0.95 0.63
DeepWalk 0.23 0.7 0.65 0.45
node2vec 0.25 0.68 0.6 0.5

GCN 0.28 0.58 0.58 0.52
CLOSE

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 1.00 1.00 0.90
JWP 0 1.00 0.99 0.90
LBP 0 1.00 0.99 0.84
RW 0 0.98 0.97 0.81

Graph
Neural Network

LINE 0.13 1.00 0.95 0.6
DeepWalk 0.3 1.00 0.93 0.48
node2vec 0.30 0.95 0.89 0.50

GCN 0.3 0.65 0.65 0.45

Table 9: Transferability of our attacks to other graph-based
classification methods on Epinions. "–" means that the
method cannot be executed on our machine due to the in-
sufficient memory.

RAND
Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.98 0.94 0.92
JWP 0 0.96 0.94 0.83
LBP 0.07 0.96 0.94 0.92
RW 0.08 0.95 0.87 0.9

Graph
Neural Network

LINE 0.33 0.96 0.95 0.92
DeepWalk 0.5 0.65 0.85 0.68
node2vec 0.48 0.65 0.82 0.65

GCN – – – –
CC

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.99 0.94 0.88
JWP 0 0.96 0.94 0.78
LBP 0 0.95 0.91 0.86
RW 0 0.94 0.87 0.76

Graph
Neural Network

LINE 0.31 0.96 0.9 0.86
DeepWalk 0.45 0.75 0.78 0.68
node2vec 0.42 0.75 0.75 0.7

GCN – – – –
CLOSE

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 1.00 0.96 0.86
JWP 0 1.00 0.96 0.86
LBP 0 1.00 0.94 0.85
RW 0 1.00 0.95 0.8

Graph
Neural Network

LINE 0.39 0.96 0.69 0.76
DeepWalk 0.45 0.58 0.55 0.46
node2vec 0.42 0.59 0.59 0.49

GCN – – – –

Table 10: Transferability of our attacks to other graph-based
classification methods on Twitter.

RAND
Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.85 0.85 0.82
JWP 0 0.82 0.81 0.76
LBP 0.01 0.82 0.8 0.72
RW 0.03 0.78 0.77 0.69

Graph
Neural Network

LINE – – – –
DeepWalk – – – –
node2vec – – – –

GCN – – – –
CC

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.88 0.86 0.85
JWP 0 0.82 0.82 0.80
LBP 0 0.81 0.81 0.78
RW 0.03 0.80 0.80 0.76

Graph
Neural Network

LINE – – – –
DeepWalk – – – –
node2vec – – – –

GCN – – – –
CLOSE

Method No attack Equal Uniform Categorical

Collective
Classification

LinLBP 0 0.87 0.85 0.83
JWP 0 0.87 0.85 0.83
LBP 0 0.82 0.82 0.8
RW 0.01 0.82 0.81 0.78

Graph
Neural Network

LINE – – – –
DeepWalk – – – –
node2vec – – – –

GCN – – – –
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Figure 8: Impact of AE on the three social graphs with syn-
thesized positive nodes with (a) Uniform cost and (b) Cate-
gorical cost.
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(b) Categorical cost

Figure 9: Impact of the number of target nodes on the three
graphs with CC as the method of selecting target nodes. (a)
Uniform cost and (b) Categorical cost.
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Figure 10: Impact of K on the four graphs with Uniform cost and Categorical cost and with CC as the method of selecting
target nodes.
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Figure 14: FNRs of our attacks with different substitute pa-
rameters of LinLBP on Enron with Equal cost.
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Figure 15: FNRs of our attacks with different substitute pa-
rameters of LinLBP on Twitter with Equal cost.
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Figure 11: Impact of λ and η on our attacks with Uniform
cost.
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Figure 12: Impact of λ and η on our attacks with Categorical
cost.
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Figure 13: FNRs of our attacks with different substitute pa-
rameters of LinLBP on Facebook with Equal cost.
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Figure 16: FNRs of our attacks vs. size of the substitute training dataset on (a) Facebook, (b) Enron, and (c) Twitter with Equal
cost.
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Figure 17: FNRs of our attacks on (a) Facebook, (b) Enron, and (c) Twitter with Equal cost when the attacker knows τ% of the
negative nodes and edges between them.
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Figure 18: FNRs of our attacks vs. (a) the substitute edgeweight; (b) size of the substitute training dataset; (c) fraction of negative
nodes on Facebook when the attacker uses substitute parameters, substitute training dataset, and a partial graph.
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Figure 19: FNRs of our attacks vs. (a) the substitute edgeweight; (b) size of the substitute training dataset; (c) fraction of negative
nodes on Enron when the attacker uses substitute parameters, substitute training dataset, and a partial graph.
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Figure 20: FNRs of our attacks vs. (a) the substitute edgeweight; (b) size of the substitute training dataset; (c) fraction of negative
nodes on Twitter when the attacker uses substitute parameters, substitute training dataset, and a partial graph.
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