
Fake Co-visitation Injection Attacks to
Recommender Systems

Guolei Yang
Iowa State University
yanggl@iastate.edu

Neil Zhenqiang Gong
Iowa State University
neilgong@iastate.edu

Ying Cai
Iowa State University
yingcai@iastate.edu

Abstract—Recommender systems have become an essential
component in a wide range of web services. It is believed that
recommender systems recommend a user items (e.g., videos on
YouTube, products on Amazon) that match the user’s preference.
In this work, we propose new attacks to recommender systems.
Our attacks exploit fundamental vulnerabilities of recommender
systems and can spoof a recommender system to make recom-
mendations as an attacker desires. Our key idea is to inject fake
co-visitations to the system. Given a bounded number of fake
co-visitations that an attacker can inject, two key challenges are
1) which items the attacker should inject fake co-visitations to,
and 2) how many fake co-visitations an attacker should inject
to each item. We address these challenges via modelling our
attacks as constrained linear optimization problems, by solving
which the attacker can perform attacks with maximal threats. We
demonstrate the feasibility and effectiveness of our attacks via
evaluations on both synthetic data and real-world recommender
systems on several popular web services including YouTube,
eBay, Amazon, Yelp, and LinkedIn. We also discuss strategies
to mitigate our attacks.

I. INTRODUCTION

In the era of information explosion, people face an over-
whelming number of choices when looking for information
of their interests on the Internet. “... a wealth of information
creates a poverty of attention and a need to allocate that
attention efficiently ...” [1]. Recommender systems play a curial
role to allocate user attention and help users locate relevant
information in a wide range of web services such as YouTube,
eBay, and Amazon.

In a recommender system, we have a set of users (e.g.,
registered users, unregistered visitors) and items (e.g., videos
on YouTube, products on eBay). Two widely used recom-
mendation tasks are user-to-item recommendation and item-
to-item recommendation. In a user-to-item recommendation,
the system recommends items to a user based on the user’s
profile (e.g., the browsing history, the items the user liked
or disliked). In an item-to-item recommendation, a list of
items are recommended to a user when the user is visiting an
item. This recommendation is commonly known as features
like “People who viewed this also viewed”. One particular

category of recommender system to implement the two rec-
ommendation tasks, which we call co-visitation recommender
system, is likely being widely used by web service providers
(e.g., YouTube [2], Amazon [3]) due to its effectiveness and
simplicity. Co-visitation recommender systems leverage co-
visitation information between items, and the key idea is that
two items that were frequently co-visited in the past are likely
to be co-visited in the future.

It was widely believed that recommender systems should
recommend a user items that match the user’s preference.
However, Xing et al. [4] recently proposed pollution attacks
to user-to-item recommendation, in which the recommender
system is spoofed to recommend any target item (e.g., a video
advertisement on YouTube) to a victim user. Their key idea
is to inject fake information, which is related to the target
item, into the victim user’s profile via cross-site request forgery
(CSRF) [5] attacks. However, pollution attacks suffer from
the following limitations: 1) pollution attacks rely on CSRF,
which makes it hard to perform the attacks at a large scale,
and 2) pollution attacks are not applicable to item-to-item
recommendation because the attacker cannot change the item
that the user is currently visiting.

In this work, we propose new attacks to spoof recom-
mender systems to make recommendations as an attacker
desires. Our attacks do not rely on CSRF, can be performed
at a large scale, and are applicable to both user-to-item and
item-to-item recommendations. In particular, we focus on co-
visitation recommender systems. Our key idea is to inject fake
co-visitations to the system, and we call our attacks fake co-
visitation injection attacks. We note that attacking co-visitation
recommender systems via injecting fake co-visitations is a
natural idea. Our key contribution is to perform the first formal
and systematic study on fake co-visitation injection attacks.

First, we propose a novel threat model. In our threat model,
we define two attacks to recommender systems. They are
promotion attacks and demotion attacks. A promotion attack is
to spoof the recommender system to recommend a target item
(e.g., a video advertisement on YouTube, a product on eBay)
to as many users as possible. Recommending a target item to
more users increases the item’s user impression, which in turn
could lead to more user visits/clicks of the item and eventually
purchases of certain products. On the contrary, a demotion
attack is to spoof the recommender system to recommend an
item to as few users as possible. An attacker can use demotion
attacks to demote its competitors’ items. Moreover, we con-
sider three categories of attackers with different background
knowledge (i.e., high knowledge, medium knowledge, and low
knowledge). These background knowledge model a variety of

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23020

web services and attack scenarios. For instance, in a high
knowledge scenario, the attacker knows the recommendation
system’s model details, which represents an upper bound of
what an attacker can achieve; in a low knowledge scenario,
the attacker only knows the publicly available recommendation
lists made by the system.

Second, we propose fake co-visitation injection attacks
to implement promotion and demotion attacks for different
background knowledge. Our key idea is to use scripts to
automatically co-visit a target item and some items, which
we call anchor items, such that the target item appears in the
anchor items’ item-to-item recommendation lists. In practice,
the number of fake co-visitations that an attacker can inject
is often bounded (though it is still large) due to resource
constraints and some mitigation techniques deployed by the
service providers [6]. Given a bounded number of fake co-
visitations, two key challenges for an attacker are 1) which
items should be selected as anchor items, and 2) how many
fake co-visitations should be injected between the target item
and each anchor item, such that the threat of the attack is
maximized, e.g., the target item is recommended to the largest
number of users for promotion attacks. We address these
challenges via modelling our attacks as constrained linear
optimization problems, by solving which an attacker obtains
the anchor items and the number of fake co-visitations for
each anchor item.

Third, we demonstrate the feasibility and effectiveness
of our attacks via performing extensive evaluations on both
synthetic recommender systems and real-world recommender
systems. In particular, we demonstrate that the recommender
systems used by several popular web services including
YouTube, eBay, Amazon, Yelp, and LinkedIn are vulnerable to
our attacks. For instance, in the experiment of YouTube, using
a single computer with moderate computing power, we are able
to promote 20 target videos within three weeks, each of which
appears in the item-to-item recommendation lists of more than
200 anchor videos on average; for each target video, the total
number of views of the anchor videos is more than 6 × 105

on average. We note that, after our attacks, a target video is
going to be shown to any user who views any of these anchor
videos. Moreover, our attack can promote a target video to be
in the user-to-item recommendation list of a newly registered
user with a small number of fake co-visitations.

Finally, we discuss strategies to mitigate our attacks. For in-
stance, for web services like YouTube, one mitigation strategy
to balance between security against our attacks and usability is
to hide the exact number of views for a video and only shows
its range. We demonstrate, via evaluations on synthetic data,
that this strategy can mitigate our attacks significantly.

We summarize our main contributions as follows:

• We present the first formal and systematic study about
fake co-visitation injection attacks to co-visitation
recommender systems.

• We propose a novel threat model to cover a variety of
attackers with different goals and background knowl-
edge. We formulate the fake co-visitation injection
attacks as constrained linear optimization problems,
by solving which an attacker can perform attacks with
maximal threats.

• We demonstrate the feasibility and effectiveness of our
attacks on both synthetic and real-world recommender
systems used by several popular web services. We also
discuss strategies to mitigate our attacks.

II. BACKGROUND AND RELATED WORK

A. Co-visitation Recommender Systems

Recommender system has become an essential component
in many web services (e.g., YouTube, eBay, Amazon, and
Yelp). In a recommender system, we have a set of users and
items. A user could be a registered user or an unregistered
visitor of a web service. Items are different on different web
services, e.g., items are videos on YouTube, while they are
products on Amazon. The goal of a recommender system is
to recommend a user items that match the user’s preference.

Many recommender systems (e.g., content-based systems
[7, 8] and collaborative filtering based systems [2, 3, 9–12])
have been developed in the past two decades. We refer readers
to surveys [13, 14] on recommender systems for details.
Among these systems, one particular collaborative filtering
based system, which we call co-visitation recommender sys-
tem, is likely being widely used by web services because
of its effectiveness and simplicity. For instance, co-visitation
recommender system is used by YouTube to recommend
videos according to Google’s official report [2], and it is used
by Amazon to recommend products according to Amazon’s
publication [3]. In this work, we focus on co-visitation recom-
mender systems.

6

8

9

12
4

7

522

27

35

13

11

Fig. 1: Illustration of a co-visitation graph. The weight on edge
(i, j) is the number of times that items i and j were co-visited,
while the weight on node i is the total number of times that i
was visited.

Co-visitation graph: Two items were co-visited by a user if
the user visited both of them. For instance, on YouTube, two
videos are co-visited by a user if the user watched one video
after watching the other one in the same browser session [2].
The key component of a co-visitation recommender system
is a data structure that we call co-visitation graph. Fig. 1
illustrates an example co-visitation graph. We denote a co-
visitation graph as G = (V,E), where each node i is an item
and an edge (i, j) means that items i and j were co-visited by
at least one user. Each edge (i, j) in the co-visitation graph has
a weight, which is the number of times that i and j were co-
visited. We call the number of times that an item i was visited
the popularity of i. In the co-visitation graph, we represent the
popularity of an item i as the node weight of i. Note that, in
the co-visitation graph, the node weight (i.e., popularity) of a
node i is no less than its weighted degree, which is the sum
of the weights of its edges. This is because users could visit

2

AmazonYouTube ebay

Fig. 2: Item-to-item recommendation in YouTube, eBay, and Amazon.

Recommenda)on	
engine	

Item	 i	 Top-‐N	 recommended	 items	

Co-‐visita)on	
graph	

Other	
informa)on	

Recommenda)on	
engine	

Profile	 of	
user	 u	 Top-‐N	 recommended	 items	

Co-‐visita)on	
graph	

Other	
informa)on	

item-‐to-‐item	 recommenda-on	

user-‐to-‐item	 recommenda-on	

Fig. 3: Item-to-item recommendation vs. user-to-item recom-
mendation.

the item i without visiting other items. We denote by wij and
wi the weights of edge (i, j) and node i, respectively.

A co-visitation recommender system mainly leverages such
co-visitation graph to recommend items to a user. The key
intuition is that items that were frequently co-visited in the
past are likely to be co-visited in the future. Specifically,
two popular recommendation tasks are item-to-item recommen-
dation and user-to-item recommendation. In an item-to-item
recommendation, when a user is visiting an item i, the system
shows the top-N recommended items that are similar to i. In a
user-to-item recommendation, the system recommends top-N
items to a user via considering the user’s visiting history. The
visiting history could include all items the user has visited if
the user logs in the web service, or it could include items the
user has visited in a browser session if the user does not log
in or the user is an unregistered visitor. Fig. 3 compares item-
to-item recommendation and user-to-item recommendation.

Item-to-item recommendation: The service provider com-
putes the similarity between each co-visited pair of items (each
edge in the co-visitation graph corresponds to such a pair)
via the co-visitation graph. Intuitively, items i and j are more
similar if they are more frequently co-visited; given the number
of co-visitations between i and j, they tend to be less similar if
they are more popular. To capture such intuitions, the similarity
sij between item i and item j is calculated as follows [2]:

sij =
wij

f(wi, wj)
, (1)

where f(wi, wj) is a function of wi and wj . Different web

services might use different such functions. For instance,
YouTube [2] uses f(wi, wj) = wi · wj . Amazon [3] uses
Cosine Similarity between the view vectors (i.e., an entry of the
vector is 1 if the corresponding user viewed the corresponding
item, otherwise the entry is 0) of two items as their similarity.
Since the entries of the view vectors have binary values, Cosine
Similarity between two items is reduced to be Equation 1 with
f(wi, wj) =

√
wi · wj .

Given an item i that a user is visiting, the system first ranks
the items using their similarities with i and then recommends
the top-N items with the largest similarities to the user. We
denote the top-N recommended items for the item i as a
sorted list Li. Note that this item-to-item recommendation
method favours unpopular items. Specifically, an item with
a small popularity is more likely to be recommended than an
item with a large popularity if they have the same number
of co-visitations with the item i. YouTube’s co-visitation rec-
ommender system [2] avoids recommending highly unpopular
items via excluding items whose popularities are smaller than
a popularity threshold τ when preparing the top-N recommen-
dation list.

We note that, although co-visitation graph is the core
information that is leveraged by co-visitation recommender
systems, other information (e.g., item diversity [2]) could also
be considered to tune the recommended items. However, in
this work, we focus on co-visitation graph and as we will
demonstrate, manipulating co-visitation graph is sufficient to
attack co-visitation recommendation systems at scale.

Fig. 2 shows item-to-item recommendations in YouTube1,
eBay, and Amazon. Although the details of the recommender
systems used by eBay and Amazon are not publicly known,
from their service names (e.g., “People who viewed this also
viewed”), we suspect that they are very likely using co-
visitation recommender systems. The parameters N are usually
20, 5, and 4 in the three web services, respectively.

User-to-item recommendation: The profile of a user con-
sists of the items that the user has visited. User-to-item
recommendation considers the user profile when making rec-
ommendations. The details of how to leverage user profile
might be different for different web services. For instance, on

1According to Xing et al. [4], for logged-in users, at most two of the top-N
recommended items on YouTube are chosen by user-to-item recommendation
instead of item-to-item recommendation. For simplicity, we treat all of them
as item-to-item recommendation.

3

YouTube [2], for each item i that was visited by the user, the
system computes its top-N recommended items Li via item-
to-item recommendation. Then YouTube treats the union of
these items Li as a candidate set and recommends the user
top-N items among the candidate set. To increase diversity
of recommended items, YouTube enlarges the candidate set
via repeatedly adding in the top-N recommended items of the
current items in the candidate set [2]. Again, apart from the
core co-visitation graph, other information could be considered
to tune the top-N recommended items.

This work focuses on item-to-item recommendation, but
our attacks are also applicable to user-to-item recommendation.

B. Attacks to Recommender Systems

1) Security Attacks: We first review existing security at-
tacks to recommender systems.

Pollution attacks to user-to-item recommender sys-
tems: Xing et al. [4] recently proposed pollution attacks
to the user-to-item recommendation and demonstrated that
YouTube, Amazon, and Google search are vulnerable to the
attacks. The goal of pollution attacks is to spoof the system
to recommend a target item to a specific victim user. The
key idea is to inject fake information into the victim user’s
profile (e.g., browsing history) via cross-site request forgery
(CSRF) [5]. Pollution attacks suffer from two key limitations:
1) pollution attacks rely on CSRF, which makes it hard to
perform the attacks at a large scale, and 2) pollution attacks
are not applicable to item-to-item recommendation because the
attacker cannot change the item that the user is visiting. Our
attacks do not rely on CSRF, can be performed at scale, and
are applicable to both item-to-item recommendation and user-
to-item recommendation.

Profile injection attacks to recommender systems using
user-item rating matrices: A few studies [15–17] have
demonstrated that recommender systems (e.g., [3, 9, 10])
leveraging a user-item rating matrix are vulnerable to profile
injection attacks (also called shilling attacks). Specifically, in a
user-item rating matrix, each row corresponds to a registered
user and each column corresponds to an item; an entry in
the matrix is the rating score that the corresponding user
gave to the corresponding item; a rating score represents the
corresponding user’s preference to the corresponding item;
and most entries of the matrix are missing since a user only
provides feedback about a small number of items. Given such
a matrix, these recommender systems infer the values of the
missing entries and then recommend users items with the
largest inferred values.

Profile injection attacks aim to make a target item be
recommended to more users. Specifically, in a profile injection
attack, an attacker first registers a large number of fake
accounts in the service. Then each fake account gives certain
rating scores to a carefully chosen subset of items. These
profile injection attacks are not applicable to co-visitation
recommender systems that do not rely on the rating matrices.

2) Privacy Attacks: Calandrino et al. [18] proposed privacy
attacks to infer a user’s profile (e.g., the products that the user
purchased on Amazon) via analyzing the publicly available
recommendations that are made by the recommender system.

Specifically, in their privacy attacks, an attacker first obtains
a partial profile of a user. For instance, on Amazon, some
users will review the products that they purchased. Through
collecting these publicly available reviews, the attacker can
obtain a subset of products that the target user purchased.
Then the attacker monitors the temporal changes of item-to-
item recommendation lists of these products. If an item appears
in the recommendation lists of a large number of products that
are in the target user’s partial profile, the attacker infers that
the user purchased the item. The authors demonstrated that
this privacy attack is feasible on various popular web services
including Amazon, LibraryThing, Hunch, and Last.fm.

III. PROBLEM DEFINITION

TABLE I: Categorization of an attacker’s background knowl-
edge

Scenario Explanation

High knowledge Co-visitation graph G,
popularity threshold τ

Medium knowledge Recommendation lists L,
item popularities W

Low knowledge Recommendation lists L

A. Attacker’s Background Knowledge

We consider three scenarios where attackers can access
different background knowledge of the recommender system.

High knowledge: In this scenarios, an attacker has access to
the co-visitation graph G and the popularity threshold τ that is
used to tune the top-N recommended items. This represents a
strong attacker because the attacker knows the key components
of the co-visitation recommender system. An attacker could
obtain these information from an insider of the web service
through underground market or the attacker itself could be an
insider. This scenario represents an upper bound of the threats
introduced by our attacks. We represent high knowledge as a
pair (G, τ).

Medium knowledge: In this scenario, an attacker writes a
web crawler to collect some items and their item-to-item top-
N recommendation lists from the web service. We note that
web services often make the item-to-item recommendation lists
publicly available so unlogged-in visitors can also see them.
Therefore, an attacker can collect these recommendation lists.
Recall that we denote by Li the item-to-item top-N recom-
mendation list of an item i. We denote the recommendation
lists collected by an attacker as a set L = {L1, L2, · · · , Lm},
where m is the number of items whose recommendation lists
are collected by the attacker.

Some web services show items’ popularity to users/visitors,
and thus an attacker has access to items’ popularities. For
instance, YouTube shows visitors the number of views (i.e.,
popularity) of a video. For convenience, we denote by a set
W = {(i, wi)|i ∈ I} the popularities of all the items that
the attacker encountered when collecting L, where the set I
consists of all the items that the attacker encountered (i.e., the
m items whose recommendation lists were collected by the
attacker and items in these recommendation lists), and wi is

4

the popularity of item i. We represent medium knowledge as
a pair (L,W).

Low knowledge: In this scenario, an attacker writes a crawler
to collect L = {L1, L2, · · · , Lm}, the item-to-item top-N
recommendation lists of m items. However, we assume the
service does not provide item popularities, and thus the attacker
does not have access to them. This scenario represents the
least knowledge that a co-visitation recommendation system
can leak to an attacker. For instance, eBay and Amazon belong
to this category of services.

B. Definition of Attacks

We consider two families of attacks to co-visitation rec-
ommender systems, namely promotion attacks and demotion
attacks. In a promotion attack, an attacker aims to make a
target item (e.g., a video on YouTube) be recommended to as
many users as possible, while the attacker’s goal is to make a
target item be recommended to as few users as possible in a
demotion attack. Formally, we define them as follows:

Definition 1 (Promotion Attacks): Given a target item and
an attacker with certain background knowledge about the co-
visitation recommender system, a promotion attack is to abuse
the recommender system so that it recommends the target item
to as many users as possible.

Definition 2 (Demotion Attacks): Given a target item and
an attacker with certain background knowledge about the co-
visitation recommender system, a demotion attack is to abuse
the recommender system so that it recommends the target item
to as few users as possible.

Limited resources: We consider an attacker injects fake co-
visitations between the target item and other selected items
to perform promotion and demotion attacks. We assume the
number of fake co-visitations that an attacker can inject is
limited. We adopt this threat model for two reasons. First,
an attacker could have limited resources, e.g., IP addresses,
computing resources. If an attacker injects a very large amount
of fake co-visitations from a single IP address, the service
provider can easily detect the attack and block the attacker [6].
Therefore, the attacker can inject a bounded number of fake co-
visitations without being detected, though this bounded number
could still be large. Second, suppose an attacker deploys our
attacks as a service. An organization wants to use this service
to promote its product, but this organization has a limited
budget to pay for the service. In this scenario, the limited
budget can be translated to a bounded number of fake co-
visitations. An attacker’s goal is to maximize the threats of
the promotion or demotion attacks, when the number of fake
co-visitations that can be injected is fixed.

C. Evaluation Metrics

1) Number of Items: One natural metric to measure promo-
tion attacks and demotion attacks is to use the increased (for
promotion attacks) or decreased (for demotion attacks) number
of items whose item-to-item recommendation lists include the
target item. For instance, suppose the target item originally
appears in the recommendation lists of 10 items, and the
number increases to be 30 after the promotion attack, then
the promotion attack’s threat is 20 items.

2) User Impressions: The metric number of items does not
consider item popularities. Appearing in the recommendation
list of a more popular item means that the target item is
going to be recommended to more users/visitors. Therefore,
we propose new metrics, which incorporate item popularities,
to evaluate the threats of promotion and demotion attacks.

Top-k user impression: When a target item it appears in
an item i’s item-to-item recommendation list, the target item
is exposed to any user who visits item i. In other words, the
target item obtains one user impression for any user visit to i.
If the item i has more visits in the future, the target item will
obtain more user impressions. Having more user impressions
could lead to more visits of the target item, which subsequently
could lead to more purchases (if the item is a product or an
ads about a product).

We note the likelihood of turning a user impression to a
visit or even purchase could depend on the specific ranking
position of the target item in the recommendation list. For
instance, the highest ranked item might have a higher visit rate
than the lowest ranked item. To incorporate the impact of item
ranks in the recommendation list, we define a user impression
as a top-k user impression if the target item is ranked top-k
on the recommendation list, where k ≤ N .

Probability of top-k user impression: Measuring top-k
user impressions for a target item requires knowledge about
the number of visits to certain items in the future, which
might not be available at the time of attacks. Therefore, we
propose probability of top-k user impression (UI), which is
the probability the target item obtains a top-k user impression
for a random user visit. Suppose a random user visits an item
in a web service, we denote by pi the probability that this
random user visits item i. Let Iit be the set of items whose
top-k recommended items include the target item it. Then the
probability of top-k user impression of it is UI =

∑
i∈Iit

pi.

Although the exact pi is not available at the time of attacks,
we can estimate it using the popularity of the item i in the past.
Several studies [19–22] found that many natural phenomena
follow a power law. In our case, power law phenomena implies
that an item that was popular in the past is likely to be
popular in the future. More specifically, the probability pi is
proportional to the current popularity of the item i in power
law phenomena. Formally, pi is estimated as follows [23]:

pi =
wi

w1 + w2 + · · ·+ wn
, (2)

where n is the total number of items and wi is the popularity
of i in the past. Therefore, we have:

UI =

∑
i∈Iit

wi

w1 + w2 + · · ·+ wn
. (3)

Intuitively, UI = x% indicates that x% of website visitors will
see the item in the recommendation lists of some other items.

Measuring threat of promotion attacks: Suppose a target
item it is originally among the top-k recommendation list in
a set of items which we denote as Iit , where k ≤ N . After
a promotion attack, this set of items is enlarged to be Jit .
We define the threat of this promotion attack as increased

5

probability of top-k user impression (IUI), which we formally
represent as follows:

IUI =
∑

i∈Jit−Iit
pi (4)

Measuring threat of demotion attacks: Suppose the set of
items whose top-k recommended items include the target item
is reduced to be Jit after a demotion attack. We define the
threat of this demotion attack as decreased probability of top-
k user impression (DUI), which we define as follows:

DUI =
∑

i∈Iit−Jit
pi (5)

An attacker’s goal is to maximize the IUI or DUI for a
target item with given background knowledge and resource.
We note that when all item popularities are known, we will
always use IUI or DUI to measure our attacks. For instance,
a service provider, who has access to popularities of all its
items, can calculate IUI and DUI to measure the security of
its recommender system against our attacks.

IV. CO-VISITATION INJECTION ATTACKS

We discuss fake co-visitation injection attack strategies for
attackers with different background knowledge.

A. Promotion Attacks

In promotion attacks, an attacker selects a set of items
whose recommendation lists haven’t included the target item
yet. We call these items anchor items. Then the attacker
injects fake co-visitations between the target item and each
anchor item to make the target item appear in its top-k
recommendation list. Specifically, to inject fake co-visitations
between items, the attacker can write a script and use it
to automatically and repeatedly visit them simultaneously or
consecutively (e.g., view the two items in the same browser
session). We note that, in practice, attacker’s resources are
bounded, and thus the number of fake co-visitations that an
attacker can inject is bounded. Therefore, in promotion attacks,
the attacker’s goal is to maximize the increased probability
of top-k user impression (IUI) for a given number of fake
co-visitations that can be injected. Two key challenges in
promotion attacks are: 1) how to select the anchor items, and
2) how many fake co-visitations should be injected for each
anchor item.

We first show how to solve the challenges with high
knowledge; then we transform a medium-knowledge attack to
a high knowledge attack by estimating the missing parameters;
and finally we transform a low-knowledge attack to a medium-
knowledge attack by estimating the item popularities.

1) High Knowledge: With this background knowledge, an
attacker can access the co-visitation graph G and the popularity
threshold τ used to filter out unpopular items when producing
the recommendation lists. Suppose the attacker can inject
totally m fake co-visitations. The probability pi that a random
user visits the item i is determined by Equation 2.

Attacking one anchor item: Suppose j is a selected anchor
item and Lj is the top-k recommendation list for j. Further-
more, we denote by kj the ranked k-th item in Lj . We note that
if we add visitations to j while the number of co-visitations

between j and the items in Lj keeps unchanged, then the
recommendation list Lj and the relative rankings of the items
in Lj keep unchanged. In order to make the target item it
appear in the top-k recommendation list of j, the attacker needs
to inject mjk fake co-visitations between the items it and j,
where mjk satisfies two conditions:

s′jit > s′jkj
(6)

wit +mjk ≥ τ, (7)

where s′jit is the similarity between j and the target item it,
and s′jkj

is the similarity between j and the k-th ranked item
kj after the attack. Formally, we have s′jit = (wjit + mjk)
/f(wj+mjk, wit+mjk) and s′jkj

= wjkj
/f(wj+mjk, wkj

),
where wjit is the number of co-visitations between j and it,
wj is j’s popularity, wit is it’s popularity before the attack, and
the function f is the normalization factor that we discussed in
Section II-A. In our formulation, we assume that the number
of co-visitations between the item j and each item in its
recommendation list does not increase significantly during the
attacking process.

Intuitively, Equation 6 guarantees the similarity between
the item j and the target item is larger than that between j and
the k-th ranked item in j’s recommendation list after the attack,
while Equation 7 guarantees the target item’s popularity passes
the threshold testing. The two conditions can be transformed to
linear constraints on mjk for various normalization functions
f , e.g., the widely used product normalization function (i.e.,
f(wi, wj) = wi · wj) and sqrt-product normalization function
(i.e., f(wi, wj) =

√
wi · wj). Details of such transformations

are given in Appendix A. These two linear constraints enable
us to compute the minimum value of mjk that is required to
attack the anchor item j.

Attacking multiple anchor items: The attacker selects a
set of anchor items that can be successfully attacked using
bounded resources to maximize the threat. For convenience,
we use a binary variable aj to represent whether the item j is
selected as an anchor item or not, i.e., aj = 1 means j is an
anchor item. With these variables, we formulate the promotion
attack as an optimization problem:

maximize IUI =
∑

j∈Vk
aj · pj (8)

subject to
∑

j∈Vk
aj ·mjk ≤ m (9)

s′jit > s′jkj
, ∀j ∈ Vk (10)

wit +mjk ≥ τ, ∀j ∈ Vk (11)
aj ∈ {0, 1}, ∀j ∈ Vk (12)

where Vk is the set of items whose top-k recommendation lists
do not include the target item.

Intuitively, in our formulation, Equation 8 indicates that
the attacker aims to maximize the IUI; Equation 9 encodes
the resource constraint; Equation 10 and 11 are the constraints
that the number of fake co-visitations mjk should satisfy to
attack anchor item j. We transform the optimization problem
to a linear programming problem. Specifically, we first derive
the minimum value of mjk using Equation 10 and 11. Then,
we replace the variable mjk with its minimum value in Equa-
tion 9. The resulting problem is a standard linear programming
problem, which has been studied extensively and can be solved
efficiently by various algorithms (e.g., Ellipsoid method [24]).

6

• Step 1: The attacker solves the optimization problem
in Equation 8, e.g., using Ellipsoid method [24]. After
this step, the attacker obtains the set of anchor items
(i.e., an item with aj = 1 is an anchor item) and the
number of fake co-visitations that the attacker needs
to inject to each anchor item.

• Step 2: The attacker uses a script to automatically
inject mjk fake co-visitations between the target item
it and each anchor item j.

2) Medium Knowledge: With medium knowledge, the at-
tacker can access the popularity of each item and see its
recommendation list, but the attacker cannot obtain the number
of co-visitations between items (i.e., edge weights of the co-
visitation graph) nor the popularity threshold τ . Once the
attacker has access to the popularity threshold τ and the
similarity sjkj

for each item j in the set of items that the
attacker has collected, the attacker can use our attacks that
we develop for high knowledge. Therefore, our key idea is to
transform attacks with medium knowledge to attacks with high
knowledge via estimating the missing parameters.

Specifically, we estimate upper bounds of the missing
parameters, which gives a lower bound of the threat an attacker
can achieve with a given number of fake co-visitations that can
be injected. First, we estimate the popularity threshold τ as the
popularity of the least popular item on the recommendation
lists. Second, we have sjkj

≤ sj(k−1)j ≤ sj(k−2)j ≤ · · · ≤
sj1j , i.e., the similarity between j and the kth ranked item kj in
j’s recommendation list is smaller than those between j and the
(k−1)th, (k−2)th, · · · , 1st ranked items of j’s recommenda-
tion list. Moreover, sjx =

wjx

f(wj ,wx)
≤ max{wj ,wx}

f(wj ,wx)
. Therefore,

we can estimate an upper bound of sjkj . In particular, we
first compute the upper bound of sjx for all items x that are
ranked higher than kj , and then take the minimum of these
upper bounds as an upper bound for sjkj

. With these estimated
parameters, the attacker follows the steps in attacks with high
knowledge to perform attacks. However, since the number of
injected co-visitations mjk are estimated, they might be larger
than what are really needed. Therefore, the attacker gradually
injects co-visitations and monitors the recommendation lists
of the anchor items; if the target item appears in the top-
k recommendation list of an anchor item, the attacker stops
injecting co-visitations to this anchor item.

We note that we assume the recommendation list is a sorted
list when estimating the parameters. However, if the list is not
sorted, we can still estimate upper bounds of these parameters.
For details, please refer to Appendix B. Moreover, techniques
like XRay [25] could also be used to estimate the missing
parameters.

3) Low Knowledge: With low knowledge, the attacker only
obtains the recommendation lists of a set of items. We propose
to estimate the item popularities and transform the attack
to an attack with medium knowledge. Specifically, previous
work [26] has shown that item popularity can be represented
as a function of a set of features (e.g., number of user reviews,
number of purchases) about the item. Formally, we have

wj = g(f1, f2, · · · , fF), (13)

where F is the number of features. For instance, in our
experiments we assume g is a linear function, which means

that item popularity is a linear regression of the feature values.
Specifically, g(f1, f2, · · · , fF) = a0 +

∑F
t=1 atft. From a

machine learning perspective, the parameters (e.g., a0, a1, · · · ,
aF for linear regression) in the function g can be learnt with
a training dataset, which consists of some items with both
popularities and feature values. However, with low knowledge,
the attacker does not know the item popularities.

To address this challenge, we propose the attacker grad-
ually injects fake co-visitations and monitors the changes of
the recommendation lists, during which the attacker refines the
parameters of g. For a web service, the attacker only needs to
estimate g once and use it for future attacks.

Learning parameters of g: The attacker first collects a set
of publicly available features of some items. Then the attacker
starts with random initial parameter values for the function g
and uses g to compute the estimated item popularities. With
the estimated popularities, the attacker performs attacks with
medium knowledge. However, the key difference is that the
attacker injects fake co-visitations to anchor items one by one
and monitors the changes of the recommendation lists. For
an anchor item j, if the target item it appears in its top-k
recommendation list before injecting mjk fake co-visitations,
which indicates j’s popularity might be overestimated, the
attacker decreases the parameters of g by half; if the target item
does not appear in the top-k recommendation list after mjk

fake co-visitations, which means the popularity of j might be
underestimated, the attacker doubles the parameters of g. Via
repeatedly adjusting the parameters of g, the attacker is able to
learn a predictor to estimate item popularity. With the function
g, the attacker transforms an attack with low knowledge to an
attack with medium knowledge, and then follows the procedure
in Section IV-A2 to perform attacks.

B. Demotion Attacks

Demotion attack aims at decreasing UI of a target item
it. We achieve this goal via removing it from the top-k
recommendation lists of the selected anchor items. Let Lj be
the recommendation list of an anchor item j that contains it
as the uth ranked item (u ≤ k). The attacker cannot remove
existing co-visitations, but it can improve the ranking of the
(u + 1)th, (u + 2)th, · · · , (k + 1)th ranked items until it is
not on the top-k recommendation list. This can be viewed as
a promotion attack which treats these items as target items.
Therefore, we apply the promotion attacks that we discuss in
the previous section to perform demotion attacks. The only
difference is that the selected anchor items should contain the
target item it. With this difference, we formulate the demotion
attack (with high knowledge) as the following optimization
problem:

maximize DUI =
∑

j∈Vk
aj · pj (14)

subject to
∑

j∈Vk
aj ·

∑k+1
x=u+1mjx ≤ m (15)

k+1
min

x=u+1
{s′jx} > s′jit , ∀j ∈ Vk (16)

k+1
min

x=u+1
{wx +mjx} ≥ τ, ∀j ∈ Vk (17)

aj ∈ {0, 1}, ∀j ∈ Vk (18)

7

where Vk is the set of items that contain it in their top-k
recommendation lists, Equation 16 guarantees the similarity
score of any of the (u+1)th, (u+2)th, · · · , (k+1)th ranked
item is greater than that of the target item it, and Equation 17
guarantees that these promoted items can appear in the recom-
mendation list. Then the attacker applies our promotion attacks
with different background knowledge to perform demotion
attacks with the corresponding background knowledge. The
only difference is that the optimization problem in Equation 8
is replaced with Equation 14.

V. EXPERIMENTS ON SYNTHETIC DATA

We evaluate fake co-visitation injection attacks using syn-
thesized datasets in this section.

A. Experiment Design

Design goals: We aim to answer the following questions:

• How does different background knowledge (i.e., high,
medium, and low knowledge) impact the threats of
fake co-visitation injection attacks?

• How does the structure of the co-visitation graph im-
pact the threats of fake co-visitation injection attacks?

• How do the attacker’s resources (i.e., the number of
fake co-visitations that the attacker can inject) and the
attacking parameter k impact the threats of fake co-
visitation injection attacks?

Synthesizing co-visitation graphs: The key component of a
co-visitation recommender system is the co-visitation graph.
We generate a co-visitation graph with 100,000 nodes. Differ-
ent structures of this graph could have different impact on our
attacks. We leverage three popular graph generation models
(i.e., regular graph, Erdos-Renyi (ER) random graph [27], and
power-law random graph [23]), which are developed by the
network science community, to generate the structure of the
co-visitation graph. Specifically, in a regular graph, each node
has the same degree; to generate a ER graph or a power law
graph, we gradually add nodes to the graph and each new
node is linked to d existing nodes. These d nodes are picked
uniformly at random in ER graph model while they are picked
with probabilities that are proportional to their current degrees
in power-law graph model. In our experiments, we assume
d = 10. Recall that an edge in the co-visitation graph means
that the two corresponding items were co-visited at least once.

The co-visitation graph also has node weights (i.e., item
popularities) and edge weights (i.e., number of co-visitations
between two items). Since item popularity often follows a
power-law distribution in real-world recommender systems, we
generate item popularities from a power-law distribution with
exponent 2 and they range from 100 to 20,000. Since an item
that are co-visited with more items might be more popular, we
assign a larger generated popularity to an item with larger node
degree in the co-visitation graph. Then we randomly assign
integer edge weights such that the weighted node degree is no
larger than the node weight for each node in the graph.

Unless otherwise mentioned, we use power-law graph
model to generate the co-visitation graph, the recommender

 0

 0.05

 0.1

 0.15

 0.2

High Medium Low

A
ve

ra
ge

 IU
I /

 D
U

I (
%

)

Background knowledge

Promition attacks
Demotion attacks

(a) IUI / DUI of attacks

 0

 20

 40

 60

 80

 100

High Medium Low

A
tta

ck
 s

uc
ce

ss
 r

at
e

(%
)

Background knowledge

Promition attacks
Demotion attacks

(b) Attack success rate

Fig. 4: Impact of the attacker’s background knowledge.

system produces a top-10 item-to-item recommendation list
with a popularity threshold τ = 500. The attacking parameter
k is set to be 5 (e.g., the attacker wants to promote a target
item to be among top-5 in the recommendation list of the
anchor items), and the attacker has resources to inject 5000
fake co-visitations. We assume product normalization function
to compute similarity. When we study the impact of one factor
(e.g., attacker’s background knowledge), we will vary this
factor while fixing other parameters.

Simulating background knowledge: In high knowledge,
the attacker knows the co-visitation graph and the popularity
threshold. In medium knowledge, the attacker knows the item
popularities and the top-10 recommendation list for each item.
In low knowledge, the attacker knows the top-10 recommen-
dation list for each item; we assume the number of reviews
about each item is available to the attacker, and the attacker
uses it as a feature to estimate item popularities. Specifically,
we randomly generate the number of reviews for each item
such that the correlation coefficient between item popularities
and reviews equals 0.8.

B. Results

We assume 10 new target items which are not in the
co-visitation graph for promotion attacks, while we pick 10
items uniformly at random from the co-visitation graph for
demotion attacks. Our reported results are averaged among the
corresponding 10 target items.

Impact of the attacker’s background knowledge: Fig. 4
shows the results for attackers with different background
knowledge. The attack success rate is defined as the number of
successfully attacked anchor items over the number of anchor
items that are selected by our attacks. An anchor item is
successfully attacked if the target item appears in its top-k
recommendation list. Formally, we define Attack Success Rate
(AST) as:

AST =
#successfully attacked anchor items

#selected anchor items
(19)

First, as expected, attacks with high knowledge achieve
larger threats (i.e. IUI for promotion attacks and DUI for
demotion attacks) than attacks with medium knowledge, which
in turn achieve larger threats than attacks with low knowledge.
However, we also find that, even if only low knowledge is
available, the attacks can still achieve threats that are almost
1/3 of those achieved with high knowledge.

8

 0

 0.05

 0.1

 0.15

 0.2

Regular ER PowerLaw

A
ve

ra
ge

 IU
I /

 D
U

I (
%

)

Co-visitation graph structure

Promition attacks
Demotion attacks

(a) IUI / DUI of attacks

 0

 20

 40

 60

 80

 100

 120

 140

Regular ER PowerLaw

A
tta

ck
 s

uc
ce

ss
 r

at
e

(%
)

Co-visitation graph structure

Promition attacks
Demotion attacks

(b) Attack success rate

Fig. 5: Impact of the co-visitation graph’s structure.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2000 4000 6000 8000 10000

A
ve

ra
ge

 IU
I (

%
)

Number of injected co-visitations

High knowledge
Medium knowledge

Low knowledge

(a) Promotion attack

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2000 4000 6000 8000 10000

A
ve

ra
ge

 D
U

I (
%

)

Number of injected co-visitations

High knowledge
Medium knowledge

Low knowledge

(b) Demotion attack

Fig. 6: Impact of the number of fake co-visitations.

Second, the attack success rate is 100% with high knowl-
edge, because the attacker knows all necessary information,
and our attack algorithm can accurately compute the number
of fake co-visitations need to be injected. With medium
knowledge, the attack success rate slightly decreases because
the key parameters are estimated. With low knowledge, the
attack success rate further decreases as the item popularities
are estimated by a linear regression.

Impact of co-visitation graph’s structure: We compared
our attacks for three types of co-visitation graphs, i.e., reg-
ular graph, Erdos-Renyi (ER) random graph, and power-law
random graph. The result is showed in Fig. 5. We find graph
structures have relatively small impact on our attacks, though
the attacker can achieve slightly better results when the co-
visitation graph is close to a ER graph.

Impact of the attacker’s resources and k: Fig. 6 shows the
impact of the number of fake co-visitations that can be injected
on the threats of our attacks. Not surprisingly, our attacks have
larger threats when the attacker has resources to inject more
fake co-visitations. Fig. 7 shows the attacking results as a
function of k. A user impression is counted when the target
item appears in top-k recommendation list of an anchor item.
Our results verify that when k is smaller, both IUI and DUI
become smaller. This is because, when the number of fake co-
visitations is fixed, the attacker can attack less anchor items
and each anchor item needs more fake co-visitations.

Comparing with baseline attacks: An attacker may also
perform simple attacks on co-visitation recommender systems,
e.g., inject co-visitations with randomly selected anchor items.
We compare our promotion attacks with two baseline attacks.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10

A
ve

ra
ge

 IU
I (

%
)

k

High knowledge
Medium knowledge

Low knowledge

(a) Promotion attack

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10

A
ve

ra
ge

 D
U

I (
%

)

k

High knowledge
Medium knowledge

Low knowledge

(b) Demotion attack

Fig. 7: Impact of k.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2000 4000 6000 8000 10000

A
ve

ra
ge

 IU
I (

%
)

Number of injected co-visitations

Our attack
Popular-item-attack

Random-item-attack

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

High Medium Low

A
ve

ra
ge

 IU
I (

%
)

Background knowledge

Our attack
Popular-item-attack

Random-item-attack

(b)

Fig. 8: Comparing with baseline attacks.

• Popular-item-attack. This attack injects co-
visitations between a target item and the most
popular item until the target item appears in its
top-k recommendation list, and then attacks the next
most popular item, until there are no more fake
co-visitations to inject.

• Random-item-attack. This attack randomly selects an
anchor item, injects co-visitations until the target item
appears in its top-k recommendation list. This process
is repeated until no more fake co-visitations to inject.

Fig. 8a shows the average IUI of our promotion attack
and the baseline attacks under medium knowledge. Our attack
achieves the highest threat when the same amount of fake
co-visitations are injected. Fig. 8b compares the performance
of our proposed attack with the baseline attacks where the
attackers have different background knowledge. Our attack
substantially outperforms the baseline attacks in all situations.

Summary: We have the following observations:

• High-knowledge attacks are more effective than
medium-knowledge attacks, which in turn are more
effective than low-knowledge attacks.

• Graph structures have small impact on our attacks.

• Our attacks have larger success rates when the attacker
has resources to inject more fake co-visitations or a
larger k is considered as a threat.

• Our attacks achieve significantly larger success rates
than the baseline attacks that simply select the most
popular items or random items as anchors.

9

VI. ATTACKING REAL-WORLD SYSTEMS

A. Experiment Overview

We evaluate our fake co-visitation injection attacks on
real-world recommender systems of several popular websites,
including YouTube (the feature “Up Next video”), eBay (the
feature “People who viewed this item also viewed”), Amazon
(the feature “People who viewed this also viewed”), Yelp
(the feature “People also viewed”), and LinkedIn (the feature
“People Also Viewed”). Among these websites, YouTube is
categorized as medium knowledge because its item popularity
is publicly visible. All the other websites provide only recom-
mendation lists, and thus they are categorized as low knowl-
edge. We consider view-based co-visitation, because injecting
purchase-based co-visitation (e.g., features like “People also
purchased”) is too expensive as the attacker needs to purchase
the items.

We implemented an automatic co-visitation injection sys-
tem using C#. We integrate the open source web crawler
GRUB into our system to collect item information from
the websites. Our experiment platform is a windows server
with Intel Xeon 64-bit 8-core CPU running on 2.93GHz and
32GB RAM. Our system automatically injects co-visitations by
repeatedly opening item web pages consecutively within the
same browser session (and using the same user account when
login is required). Since none of the attacked web services
provides high-knowledge, we first used approximately 1 week
to estimate missing parameters on all these recommender
systems with our proposed methods. We then continue to attack
these web services for 3 weeks, and record the accumulated
attacking results. We divide the 3 weeks period into multiple
12 hour attacking windows. At the beginning of each 12 hour
window, our system evaluates the attacking results, updates
its budget, and then re-selects anchor items if necessary. This
includes selecting new anchors if the attack on some anchors
failed after 2 or more attacking windows.

We also attempted to avoid the injected co-visitations being
filtered out by the web services. To this end, we inject co-
visitations with random time intervals to avoid any fixed
patterns. Additionally, consecutively injected co-visitations are
generated to include different items. We also disguised the IP
address of our experiment platform. Specifically, we purchased
a VPN service which provides more than 100 VPN servers
with IP addresses all over the world. Our system frequently
switches between these servers to visit the websites, in order to
avoid an IP address being blocked due to abnormal activities.
The cost of such VPN service is around 10$ per month at the
time we conducted the experiments.

For each web service, we randomly select a set of 40 target
items, 20 for promotion attacks and the rest for demotion
attacks. Anchor items are selected among the set of items
that we collected from each web service according to our
attacks. Specifically, for each target item, we first generate a
set of candidate anchor items. These candidates are selected
by searching items containing similar keywords and/or falls
in the same category as the target item. This is to make the
attacks more realistic. Because it might be suspicious if users
co-visit two items that are completely unrelated. We average
our results over the target items for promotion and demotion
attacks, respectively.

 0

 100

 200

 300

 400

 500

 600

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(a) Promotion attacks

 0

 20

 40

 60

 80

 100

 120

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(b) Demotion attacks

0x10^0

2x10^5

4x10^5

6x10^5

8x10^5

 3 6 9 12 15 18 21

S
um

 o
f p

op
ul

ar
ity

Day

Promotion attacks
Demotion attacks

(c) Popularity of successfully attacked
anchors

0x10^0

2x10^2

4x10^2

6x10^2

8x10^2

1x10^3

 0 1000 2000 3000 4000 5000

F
ak

e
co

-v
is

ita
tio

ns
 n

ee
de

d

Anchor popularity

Promotion attacks
Demotion attacks

(d) Cost vs. anchor popularity

Fig. 9: Attacking YouTube.

Ethical considerations: To the best of our knowledge, there
is no known methodology that could obtain our results without
any effect on the real-world recommender systems, though we
want to stress that our experiments have very low risks to
the service providers and users. For the service providers, our
attacks will affect their co-visitation graphs via changing the
weights of a very small number of edges. For a user, the risk
is that some items are recommended to him/her due to our
attacks.

We take several actions to mitigate such risks. First, we
limit our experiments to small scale attacks that are enough
to demonstrate effectiveness and feasibility of our attacks.
Second, we reported our attacks to the service providers. Our
experiments strictly followed the responsible disclosure policy
for vulnerability testing of the web services. We confirmed that
our research is IRB exempt.

B. Attacking Results

YouTube: Before attacks, we randomly crawled information
of approximately 100,000 videos using the same video selec-
tion method as introduced in [26]. We collected title, view
count (popularity), and recommendation list of each video.
All target items are selected from these videos. Anchor items
are selected according to our attacks, but we avoid extremely
popular items, e.g., items being viewed for over 1 million
times. This is because attacking such items requires more
resources (i.e., time or computing power) than our experiment
platform has, but our attacks are also applicable to such popular
items. Specifically, we select anchor items with the number of
total views between 500 to 10,000. We set k to be 9 because
top-9 videos in a recommendation list are shown when a video
is being watched.

10

 20

 40

 60

 80

 100

2500 5000 7500 10000Su
cc

es
sf

ul
ly

 a
tta

ck
ed

 it
em

s
(%

)

Number of injected co-visitations

S
uc

ce
ss

fu
lly

 a
tta

ck
ed

 v
ic

tim
s

(%
)

Number of injected co-visitations

(a)

 20

 40

 60

 80

 100

20 15 10 5Su
cc

es
sf

ul
ly

 a
tta

ck
ed

 it
em

s
(%

)
k

S
uc

ce
ss

fu
lly

 a
tta

ck
ed

 v
ic

tim
s

(%
)

k
 (b)

Fig. 10: Attacking user-to-item recommendation in YouTube.

We limit the number of injected co-visitations to approx-
imately 2400 per 12 hour window. To make our injected co-
visitations be more likely to be counted by YouTube, our
system kept playing the opened video streams for about 3
minutes. Note that computing the exact IUI or DUI requires
knowledge of precise popularity of every video on YouTube,
which we do not have access to. Thus we report two related
measurements. The first one is the number of selected anchor
items and the number of anchor items that are successfully
attacked. For promotion attacks, an anchor item is successfully
attacked if the target item appears in its recommendation list
after the attack; while for demotion attacks, it means the target
item disappears from its recommendation list. The second one
is sum of popularity of successfully attacked anchor items.
Fig. 9 shows our results. The results are averaged over the
20 target items for promotion attacks and demotion attacks,
respectively. We have observed a delay of 24-48 hours between
attacks and affected recommendation lists update. Such a delay
is also widely observed on other attacked web services.

We observe that more than a half of selected anchor
items are successfully attacked for both promotion attacks and
demotion attacks. For promotion attacks, the sum of popularity
of the successfully attacked anchor videos reaches more than
6 × 105. A target item will be shown to any user who visits
a successfully attacked anchor video in the future. Fig. 9d
shows that more co-visitations are needed to attack anchor
videos with larger popularities. This is because videos that
appeared on the recommendation list of a popular anchor video
are also likely to be popular, and thus have higher number
of co-visitations with the anchor video. A larger number
of co-visitations is needed for the target video to compete
with popular videos on the recommendation list. Nevertheless,
attacking popular anchor items is not our attack’s goal. Our
attacks aim to optimize user impressions of target items,
and popular items may or may not be selected as anchors.
Moreover, demotion attacks require larger number of fake co-
visitations than promotion attacks, since demotion attacks need
to promote multiple videos in order to exclude the target item
from the recommendation list.

In addition to experiments on the item-to-item recom-
mendation, we also evaluate our attacks for the user-to-item
recommendation on YouTube. According to [2], the user-
to-item recommendation list generated for a registered user
is based on the co-visitation information of videos the user
viewed before. Therefore, user-to-item recommendation is also
vulnerable to our attacks. Although the exact list of videos a

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(a) Promotion attack

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(b) Demotion attacks

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3 6 9 12 15 18 21

S
um

 o
f p

ur
ch

as
e

Day

Promotion attacks
Demotion attacks

(c) Purchases of successfully attacked
anchors

Fig. 11: Attacking eBay.

user viewed are not publicly available, each user does have an
open list of videos he/she “liked” and “subscribed”, which can
be used as anchor items in our attacks.

To evaluate our attack without affecting real users, we
registered 25 fake accounts. We had each of them watch up to
100 randomly selected videos, as well as like and/or subscribe
an arbitrary number of the watched videos. YouTube has then
generated a list of recommendations for each fake account.
We use these fake accounts as victims to perform attacks.
The attack goal is to make a randomly selected target video
to appear on top-k user-to-item recommendation lists of the
victims, i.e., promoting a specific video to a targeted group of
users. The attacker only requires the list of videos the victims
liked and subscribed, which we demonstrate to be sufficient to
launch effective attacks in our experiments.

Fig. 10a shows the fraction of successfully attacked victims
whose user-to-item recommendation lists contain the target
video as we inject more fake co-visitations. The k is set to be
10 since it is the size of the first page of the recommendation
list. We repeated the attack for 10 times, each time using a
different target video, and we report the average results. As
expected, the fraction of successfully attacked victims grows
as the number of fake co-visitations increases.

We also studied the impact of k value on the attack success.
In this experiment, the total number of fake co-visitations is
fixed to be 5000. The k value is adjusted from 20 to 5 and
the result is showed in Fig. 10b. As expected, the fraction of
successfully attacked victims drops when we decrease k.

eBay: We collected information of over 7,000 items on
eBay with a crawler and use them as candidates for target
and anchor items. These items are randomly crawled from

11

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(a) Promotion attacks

 0

 10

 20

 30

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(b) Demotion attacks

Fig. 12: Attacking Amazon.

 0

 20

 40

 60

 80

 100

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(a) Promotion attacks

 0

 10

 20

 30

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(b) Demotion attacks

Fig. 13: Attacking Yelp.

all categories on eBay. When an item is sold out on eBay,
it will be removed from recommendation lists. Therefore, it
is meaningless to use sold out items as target or anchor.
Additionally, the feature “People who viewed this also viewed”
feature is not enabled for all items at all time. Taking these
features into consideration, we limit our target and anchor item
selection process to items with stable supply (i.e., they have
more than one hundred in stock and/or being listed for more
than 30 days) and with the recommendation feature enabled
at the time of attack. The number of views of each item is
not visible so it is estimated based on item features including
the number of purchases and the number of reviews. The k
value is set to be 5, which is the size of recommendation
lists on eBay. Our system injects 2400 co-visitations per 12
hour. In our preliminary experiments, we observed that eBay
strongly favors co-visitations generated by registered users
over anonymous visitors. Thus, we manually registered 10 fake
accounts to perform the attacks.

We report the number of selected anchor items and success-
fully attacked anchor items in Fig. 11. Since item popularity is
not known, we also report the sum of purchases of successfully
attacked anchor items as a related measurement for popular-
ity (Fig. 11c). Overall, compared with YouTube, attacks on
eBay demonstrate a smaller number of selected anchor items
and a smaller fraction of successfully attacked anchor items.
The reason is that eBay is a low-knowledge attack scenario,
and some fake co-visitations are wasted on failed attacking
attempts. In contrast, YouTube is a medium-knowledge attack
scenario since it shows item popularity. This result indicates
that limiting an attacker’s background knowledge about item
popularity is an useful way to mitigate our attacks.

 0

 20

 40

 60

 80

 100

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(a) Promotion attacks

 0

 10

 20

 30

 3 6 9 12 15 18 21

N
um

be
r

of
 a

nc
ho

rs

Day

Anchors selected
Successful attacks

(b) Demotion attacks

Fig. 14: Attacking LinkedIn.

Amazon: We found that Amazon shows a “People who
viewed this also viewed” recommendation list, but only for
items that are purchased by less than about 5 times within
a certain time period. Once the item sales increase, this
recommendation list is replaced by a purchase-based recom-
mendation list (“Items frequently bought together”). In our
experiments, we found that some successfully attacked anchor
items no longer have the view-based recommendation lists.
This makes it hard to track attacking results and to perform
adaptive attacks for such items. Therefore, we remove these
items from our experiment statistics, and report results of
items with stable recommendation lists. The result is shown
in Fig. 12. k is set to be 4, and the number of injected fake
co-visitations is 3000 per 12 hour.

Yelp: Items on Yelp are location-sensitive, e.g., a restaurant
will appear in the recommendation list of another restaurant
only if they locate in the same city. Therefore, we require
the selection of target and anchor items to be in the same
city. We crawled information of over 4000 restaurants in New
York city, San Francisco, Los Angeles, and Chicago as item
set. Yelp didn’t explicitly state if the recommender system
considers co-visitation from registered users only, but for the
best result, we used multiple fake accounts to launch the attack.
We estimate item popularity using the number of reviews as
well as their rank in local restaurant list, and the number
of fake co-visitations injected is 3000 per 12 hour. The size
of recommendation list is only 3, thus we also set k to be
3. The attacking result is illustrated in Fig. 13. On average
our attack can successfully make a target item appear in the
recommendation list of more than 20 restaurants. Note that the
item set of Yelp is significantly smaller comparing to YouTube
or eBay, making it harder to find suitable anchor items. We also
observed that some items in the recommendation list appear to
be immune from our co-visitation injection attacks. We suspect
that such items might be from a sponsor, who pays Yelp to
always show its item in recommendation list. It is also possible
that the recommendation list is not generated completely based
on the number of co-visitations, but also involves other factors
such as user reviews.

LinkedIn: Finally, we test our attacking system against the
“People Also Viewed” list on LinkedIn. LinkedIn requires very
complete personal information and valid email address. Thus,
we used 5 actual user accounts for our attack. Using these
5 users as seeds, we crawled publicly available information

12

of about 200 people, and used these people and their direct
connections as item set which include about 1200 people. The
result (Fig. 14) shows that our attacks are effective and increase
the number of a target item’s appearance in recommendation
list by approximately 15 on average.

VII. COUNTERMEASURES

A. Limiting Background Knowledge

Our experiments in Section V show that limiting the
attacker’s background knowledge can substantially reduce the
threats of our attacks. For instance, when the service provider
shows the recommendation lists of the items but does not show
the item popularities, i.e., the attacker has low knowledge about
the recommender system, threats of our attacks are reduced,
though they are still feasible and effective. This implies that
service provider can hide item popularities in order to mitigate
our attacks. However, in certain web services (e.g., YouTube),
item popularities are useful information for users; hiding item
popularities may affect user experience.

We propose to discretize item popularities and show the
popularity range instead of the exact popularity for each
item. This could achieve a trade-off between security of the
recommender system against our attacks and user experience.
Fig. 15 shows our attack results with medium knowledge when
we discretize item popularities using different granularities.
The co-visitation graph and experimental settings are the same
with those we used in Section V. When the item popularity
is discretized, our attacks sample a random number in the
popularity range of an item and treat it as the item popularity.
We observe that, when item popularity is discretized with a
granularity of 2000, the threats of our attacks drop by about
40%, making an attack with medium knowledge similar to an
attack with low knowledge.

B. Limiting Fake Co-visitations

Another direction of mitigating our attacks is to limit the
number of fake co-visitations that an attacker can inject.

CAPTCHA: CAPTCHA is a widely used security technique
to distinguish between human and computer. We note that
none of the real-world recommender systems that we attacked
has deployed CAPTCHAs. A web service can show a visitor
CAPTCHA challenges if the number of visiting requests from
the same IP address within a given short period of time is larger
than a threshold. The threshold achieves a trade-off between
user experience and attacker’s success. Specifically, legitimate
users/visitors might be affected by CAPTCHAs if the threshold
is too small, while a too large threshold allows attackers
to inject many fake co-visitations. Setting a good threshold
requires analyzing behaviors of users in the recommender
system. For instance, if a majority of users issue 10 visiting
requests within 5 minutes, then the threshold can be set to be
10 for 5 minutes.

We note that recent studies [28, 29] demonstrated that
CAPTCHA challenges can be automatically solved by machine
learning techniques with relatively high accuracies, and an at-
tacker can outsource CAPTCHA challenges to human workers
using crowdsourcing platforms [30]. However, CAPTCHA is
easy to deploy and it can still slow down the injection of

 0

 0.05

 0.1

 0.15

 0.2

None 500 1000 2000

A
ve

ra
ge

 IU
I /

 D
U

I (
%

)

Discrete granularity

Promition attacks
Demotion attacks

(a) IUI / DUI of attacks

 0

 20

 40

 60

 80

 100

None 500 1000 2000

A
tta

ck
 s

uc
ce

ss
 r

at
e

(%
)

Discrete granularity

Promition attacks
Demotion attacks

(b) Attack success rate

Fig. 15: Effect of discretizing popularity of items.

fake co-visitations (because the attacker needs time to solve
CAPTCHAs and it is challenging for the attacker to solve them
with 100% accuracy) and increase the costs for attackers.

Detecting fake co-visitations: Another mitigation strategy
is to detect fake co-visitations. Once fake co-visitations are
detected, the service provider can remove them from the co-
visitation graph or reduce their importance if the detector
is not very accurate. From a machine learning perspective,
detecting fake co-visitations is an anomaly detection problem.
For instance, if an unpopular item suddenly has many co-
visitations with some items, then it is possible that an attacker
is trying to promote this item via our fake co-visitation
injection attacks. Via analyzing temporal dynamics (e.g., using
similar techniques in Viswanath et al. [31]) of visits and
co-visits, the service provider could detect certain fake co-
visitations and mitigate our attacks. We were not able to
explore this mitigation strategy since we do not have access
to the visits and co-visits with temporal information.

Using co-visitations from registered users: The service
provider can also choose to distinguish between visits from
registered users and those from unlogged-in visitors, and give
higher weights to visits from registered users. Moreover, the
service provider can constrain that a registered user can only
contribute to a limited number of co-visitations to each pair
of items. As a result, fake co-visitation injection attacks rely
on registering a large amount of fake accounts and using
them to perform co-visitations. These fake accounts could be
detected via Sybil detection methods. For instance, when social
relationships between accounts are available, we can leverage
SybilBelief [32] to detect fake accounts.

VIII. DISCUSSION

Other attacks: We note that web services often provide a
search functionality to help users locate relevant items. An at-
tacker could leverage this functionality to perform attacks. For
instance, an attacker could add popularly searched keywords
to the title of the target item to perform promotion attacks.
Such methods, usually called Search Engine Optimization
(SEO) [33], is complementary to our fake co-visitation based
methods, and they can be used together in practice.

Moreover, an attacker could simply visit a target item to
make it more popular, and presumably it will appear in search
results more frequently, which serves as a promotion attack.

13

However, it is hard for this method to perform optimized
attacks. This is because how an item’s popularity is related
to its ranking in the search results is not publicly known and
may vary from service to service, which implies that it is hard
for an attacker to optimize the number of visits to a target item
in order to promote it to be a certain rank in the search results.
Furthermore, it is hard to evaluate the success of this method
because how exactly users use the search functionality is also
not publicly known. This limitation implies that, when an
attacker develops the attacks as a service, the attacker cannot
quantify the success of the attacks to an organization who pays
for the service.

Attacking YouTube’s deep learning based recommender
systems: Google researchers recently proposed a deep learn-
ing based user-to-item recommender system for YouTube
(especially for mobile version of YouTube) [34]. This new
recommender system is much more complex than the co-
visitation recommender system that we focus on. It is unclear
whether our attacks are also effective at attacking such user-to-
item recommender systems. Nevertheless, it is an interesting
future work to study security of such deep learning based
recommender systems.

IX. CONCLUSION AND FUTURE WORK

In this work, we perform the first formal and systematic
study on fake co-visitation injection attacks to recommender
systems. First, we propose a novel threat model, which covers
a variety of attackers with different goals and background
knowledge. Second, we formulate fake co-visitation injection
attacks as constrained optimization problems. An attacker can
perform attacks with maximum threats via solving the opti-
mization problems. Third, we demonstrate the feasibility and
effectiveness of our attacks via evaluations on both synthetic
recommender systems and real-world recommender systems
used by popular web services such as YouTube, eBay, and
Amazon. We plan to explore new methods to defend and
mitigate our attacks in the future.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments, which have helped improve the paper substantially.
This work is supported by the Department of Electrical and
Computer Engineering of the Iowa State University through a
startup package.

REFERENCES

[1] Herbert A Simon. Designing organizations for an
information-rich world. 1971.

[2] James Davidson, Benjamin Liebald, Junning Liu, Palash
Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta,
Yu He, Mike Lambert, Blake Livingston, et al. The
youtube video recommendation system. In ACM confer-
ence on Recommender systems, pages 293–296. ACM,
2010.

[3] Greg Linden, Brent Smith, and Jeremy York. Ama-
zon.com recommendations item-to-item collaborative fil-
tering. IEEE Internet Computing, 7(1):76–80, 2003.

[4] Xinyu Xing, Wei Meng, Dan Doozan, Alex C Snoeren,
Nick Feamster, and Wenke Lee. Take this personally:

Pollution attacks on personalized services. In USENIX
Security, pages 671–686, 2013.

[5] William Zeller and Edward W. Felten. Cross-site request
forgeries: Exploitation and prevention. Technical report,
Princeton University, 2008.

[6] Miriam Marciel, Rubén Cuevas, Albert Banchs, Roberto
Gonzalez, Stefano Traverso, Mohamed Ahmed, and Ar-
turo Azcorra. Understanding the detection of view fraud
in video content portals. In WWW, pages 357–368, 2016.

[7] K. Lang. Newsweeder: Learning to filter netnews. In
ICML, 1995.

[8] M. Pazzani and D. Billsus. Learning and revising
user profiles: The identification of interesting web sites.
Machine Learning, 27:313–331, 1997.

[9] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collabora-
tive filtering of netnews. In CSCW, 1994.

[10] Y Koren, R Bell, and C Volinsky. Matrix factorization
techniques for recommender systems. Computer, 8:30–
37, 2009.

[11] Bin Liu, Deguang Kong, Lei Cen, Neil Zhenqiang Gong,
Hongxia Jin, and Hui Xiong. Personalized mobile app
recommendation: Reconciling app functionality and user
privacy preference. In WSDM, 2015.

[12] Bin Liu, Yao Wu, Neil Zhenqiang Gong, Junjie Wu,
Hui Xiong, and Martin Ester. Structural analysis of
user choices for mobile app recommendation. ACM
Transactions on Knowledge Discovery from Data, 11(2),
2016.

[13] Gediminas Adomavicius and Alexander Tuzhilin. Toward
the next generation of recommender systems: A survey of
the state-of-the-art and possible extensions. IEEE TKDE,
17(6), 2005.

[14] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez.
Recommender systems survey. Knowledge-Based Sys-
tems, 46:109–132, 2013.

[15] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Sil-
vestre. Collaborative recommendation: A robustness
analysis. ACM Transactions on Internet Technology,
4(4):344–377, 2004.

[16] Shyong K Lam and John Riedl. Shilling recommender
systems for fun and profit. In WWW, 2004, pages 393–
402.

[17] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and
Chad Williams. Toward trustworthy recommender sys-
tems: An analysis of attack models and algorithm robust-
ness. ACM Transactions on Internet Technology, 7(4):23,
2007.

[18] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan,
Edward W. Felten, and Vitaly Shmatikov. “you might
also like:” privacy risks of collaborative filtering. In IEEE
Symposium on Security and Privacy, 2011.

[19] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez,
Yongyeol Ahn, and Sue Moon. I tube, you tube, ev-
erybody tubes: Analyzing the world’s largest user gen-
erated content video system. In ACM/USENIX Internet
Measurement Conference, 2007.

[20] Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On power-law relationships of the internet
topology. In SIGCOMM, 1999.

[21] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J.
Newman. Power-law distributions in empirical data.

14

SIAM Rev., 51(4):661–703, 2009.
[22] Neil Zhenqiang Gong, Wenchang Xu, Ling Huang, Pra-

teek Mittal, Emil Stefanov, Vyas Sekar, and Dawn Song.
Evolution of social-attribute networks: Measurements,
modeling, and implications using google+. In IMC, 2012.

[23] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[24] Leonid G Khachiyan. Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

[25] Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, An-
drei Papancea, Theofilos Petsios, Riley Spahn, Augustin
Chaintreau, and Roxana Geambasu. Xray: Enhancing
the web’s transparency with differential correlation. In
23rd USENIX Security Symposium (USENIX Security
14), 2014.

[26] Gloria Chatzopoulou, Cheng Sheng, and Michalis Falout-
sos. A first step towards understanding popularity in
youtube. In IEEE INFOCOM Workshops, pages 1–6.
IEEE, 2010.

[27] P. Erdős and A. Rényi. On random graphs i. Publ. Math.
Debrecen, 6, 1959.

[28] Elie Bursztein, Matthieu Martin, and John C. Mitchell.
Text-based captcha strengths and weaknesses. In ACM
CCS, pages 125–138, 2011.

[29] Elie Bursztein, Romain Beauxis, Hristo Paskov, Daniele
Perito, Celine Fabry, and John Mitchell. The failure
of noise-based non-continuous audio captchas. In IEEE
Symposium on Security and Privacy, pages 19 – 31, 2011.

[30] Inside india’s captcha-solving economy. http://blogs.
zdnet.com/security/?p=1835. 2016-02-07.

[31] Bimal Viswanath, Muhammad Ahmad Bashir, Mark
Crovella, Saikat Guha, Krishna P. Gummadi, Balachander
Krishnamurthy, and Alan Mislove. Towards detecting
anomalous user behavior in online social networks. In
Usenix Security, 2014.

[32] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal.
Sybilbelief: A semi-supervised learning approach for
structure-based sybil detection. IEEE Transactions on
Information Forensics and Security, 9(6):976–987, 2014.

[33] Harold Davis. Search engine optimization. ” O’Reilly
Media, Inc.”, 2006.

[34] Paul Covington, Jay Adams, and Emre Sargin. Deep neu-
ral networks for youtube recommendations. In RecSys,
2016.

APPENDIX

A. Formulating Linear Constrains

We show details of transforming two common normal-
ization functions into corresponding linear constrains (as in
Equation 6) in formulating the optimization problem. First,
for the product normalization function, we have:

s′jit > s′jkj
(20)

Via substituting with

s′jit =
wjit +mjk

(wj +mjk) · (wit +mjk)
(21)

s′jkj
=

wjkj

(wj +mjk) · wkj

, (22)

we have the following linear constraint:

wjit +mjk

(wj +mjk)(wit +mjk)
>

wjkj

(wj +mjk)wkj

(23)

wjit +mjk

wit +mjk
>
wjkj

wkj

(24)(
1−

wjkj

wkj

)
mjk >

witwjkj

wkj

− wjit (25)

For the sqrt-product normalization function, the transfor-
mation is similar. After substituting with the sqrt-product
function, we get:

wjit +mjk√
(wj +mjk)(wit +mjk)

>
wjkj√

(wj +mjk)wkj

(26)

(wjit +mjk)
2

wit +mjk
>
w2

jkj

wkj

(27)

m2
jk −

(
wjkj

wkj

+ 2wjit

)
mjk >

witw
2
jkj

wkj

− wjit (28)

Since only non-negative real root of Equation 28 is meaningful
in our context, we can approximate it as a corresponding linear
constraint:

mjk >
α1 +

√
α2
1 − 4α2

2
, (29)

where the two constant coefficients are α1 =
wjkj

wkj
+2wjit and

α2 = −
witw

2
jkj

wkj
+ wjit .

B. Unsorted Recommendation List

In our attacks with medium and low knowledge, we assume
that the recommendation lists are sorted by the similarity
between items. In the case that the list is unsorted, we assume
the N items in the recommendation list are still the top-N
items with highest similarity scores, only the orderings among
them are random. The attacker’s goal, however, is to make the
target item appear in the top-N recommendation list. k is no
longer a meaningful attacking parameter. We modify Equation
6 accordingly to reflect the new constraint:

s′jit >
N
min
k=1
{s′jkj

} (30)

Additionally, the parameter estimation process for medium
knowledge attacker also needs to be modified. Without order
information, the attacker can only estimate a loose upper bound
for sjx by sjx ≤ max{wj ,wx}

f(wj ,wx)
. Nevertheless, this loose upper

bound can be updated during the aforementioned adaptive
attacking process.

15

