Solutions to Monday Morning Exercises
These are exercises that we will do in the optional class on Monday
morning for those who want more practice data manipulation with
tidyverse
. If you can do these coding challenges with little
difficulty, there is no need to attend the Monday class. Note: We will
work with two the iris
and mtcars
data sets - while these have
nothing to do with RNA-Seq, the skills you develop will translate
directly to count or expression data from RNA-Seq experiments.
1. Warm up with the iris
data frame.
- Show the first 3 rows
- Show the last 3 rows
- Show 3 random rows without repetition
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
148 | 6.5 | 3.0 | 5.2 | 2.0 | virginica |
149 | 6.2 | 3.4 | 5.4 | 2.3 | virginica |
150 | 5.9 | 3.0 | 5.1 | 1.8 | virginica |
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
36 | 5.0 | 3.2 | 1.2 | 0.2 | setosa |
66 | 6.7 | 3.1 | 4.4 | 1.4 | versicolor |
132 | 7.9 | 3.8 | 6.4 | 2.0 | virginica |
2. Using the iris
data set,
- Find the mean value of all 4 measurements
- Find the mean value of all 4 measurements for each Species
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
5.843333 | 3.057333 | 3.758 | 1.199333 |
Species | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
setosa | 5.006 | 3.428 | 1.462 | 0.246 |
versicolor | 5.936 | 2.770 | 4.260 | 1.326 |
virginica | 6.588 | 2.974 | 5.552 | 2.026 |
3. Using the iris
data set,
- Sort the observations by Sepal.Width in decreasing order.
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
5.7 | 4.4 | 1.5 | 0.4 | setosa |
5.5 | 4.2 | 1.4 | 0.2 | setosa |
5.2 | 4.1 | 1.5 | 0.1 | setosa |
5.8 | 4.0 | 1.2 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
5.4 | 3.9 | 1.3 | 0.4 | setosa |
4. Using the iris
data`m set,
- Count the number of flowers of each Species
Species | count |
setosa | 50 |
versicolor | 50 |
virginica | 50 |
5. Using the iris
data set,
- Count the number of observations where Petal.Length is longer than
Sepal.Width
6. Using the iris
data set,
- Find the Species with the most number of observations where the
Sepal.Length is less then the mean Sepal.Length of all observations
Species | sum(long) |
virginica | 44 |
7. Using the iris
data set,
- Convert the data frame from the current wide format to a tall format,
with just 3 columns: Species, Measurement, Value.
Species | Measurement | Value |
setosa | Sepal.Length | 5.1 |
setosa | Sepal.Length | 4.9 |
setosa | Sepal.Length | 4.7 |
setosa | Sepal.Length | 4.6 |
setosa | Sepal.Length | 5.0 |
setosa | Sepal.Length | 5.4 |
8. Using the mtcars
data set,
- Find the mean weight of all cars with mpg > 20 and cyl = 4.
9. Using the mtcars
data set,
- Add a new column named
bmi
that is equal to (hp*mpg/wt)
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | bmi |
21.0 | 6 | 160 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 | 881.6794 |
21.0 | 6 | 160 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 | 803.4783 |
22.8 | 4 | 108 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 | 913.9655 |
21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 | 732.1928 |
18.7 | 8 | 360 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 | 951.3081 |
18.1 | 6 | 225 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 | 549.2775 |
10. Using the mtcars
data set
- Find all rows whose car names have numbers in them.
name | mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
Mazda RX4 | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |
Mazda RX4 Wag | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
Datsun 710 | 22.8 | 4 | 108.0 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |
Hornet 4 Drive | 21.4 | 6 | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
Duster 360 | 14.3 | 8 | 360.0 | 245 | 3.21 | 3.570 | 15.84 | 0 | 0 | 3 | 4 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.190 | 20.00 | 1 | 0 | 4 | 2 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.150 | 22.90 | 1 | 0 | 4 | 2 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.30 | 1 | 0 | 4 | 4 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.90 | 1 | 0 | 4 | 4 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0 | 0 | 3 | 3 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.730 | 17.60 | 0 | 0 | 3 | 3 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0 | 0 | 3 | 3 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.200 | 19.47 | 1 | 1 | 4 | 1 |
Camaro Z28 | 13.3 | 8 | 350.0 | 245 | 3.73 | 3.840 | 15.41 | 0 | 0 | 3 | 4 |
Fiat X1-9 | 27.3 | 4 | 79.0 | 66 | 4.08 | 1.935 | 18.90 | 1 | 1 | 4 | 1 |
Porsche 914-2 | 26.0 | 4 | 120.3 | 91 | 4.43 | 2.140 | 16.70 | 0 | 1 | 5 | 2 |
Volvo 142E | 21.4 | 4 | 121.0 | 109 | 4.11 | 2.780 | 18.60 | 1 | 1 | 4 | 2 |