Linear Algebra Examples¶
This just shows the machanics of linear algebra calculations with python. See Lecture 5 for motivation and understanding.
import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
Resources¶
- Tutorial for ``scipy.linalg` <http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html>`__
Exact solution of linear system of equations¶
A = np.array([[1,2],[3,4]])
A
array([[1, 2],
[3, 4]])
b = np.array([3,17])
b
array([ 3, 17])
x = la.solve(A, b)
x
array([ 11., -4.])
np.allclose(A @ x, b)
True
A1 = np.random.random((1000,1000))
b1 = np.random.random(1000)
Using solve is faster and more stable numerically than using matrix inversion¶
%timeit la.solve(A1, b1)
The slowest run took 5.24 times longer than the fastest. This could mean that an intermediate result is being cached
1 loops, best of 3: 90.3 ms per loop
%timeit la.inv(A1) @ b1
1 loops, best of 3: 140 ms per loop
Under the hood (Optional)¶
The solve
function uses the dgesv
fortran function to do the
actual work. Here is an example of how to do this directly with the
lapack
function. There is rarely any reason to use blas
or
lapack
functions directly becuase the linalg
package provides
more convenient functions that also perfrom error checking, but you can
use Python to experiment with lapack
or blas
before using them
in a language like C or Fortran.
import scipy.linalg.lapack as lapack
lu, piv, x, info = lapack.dgesv(A, b)
x
array([ 11., -4.])
Basic information about a matrix¶
C = np.array([[1, 2+3j], [3-2j, 4]])
C
array([[ 1.+0.j, 2.+3.j],
[ 3.-2.j, 4.+0.j]])
C.conjugate()
array([[ 1.-0.j, 2.-3.j],
[ 3.+2.j, 4.-0.j]])
def trace(M):
return np.diag(M).sum()
trace(C)
(5+0j)
np.allclose(trace(C), la.eigvals(C).sum())
True
la.det(C)
(-8-5j)
np.linalg.matrix_rank(C)
2
la.norm(C, None) # Frobenius (default)
6.5574385243020004
la.norm(C, 2) # largest sinular value
6.3890280236012158
la.norm(C, -2) # smallest singular value
1.4765909770949921
la.svdvals(C)
array([ 6.38902802, 1.47659098])
Least-squares solution¶
la.solve(A, b)
array([ 11., -4.])
x, resid, rank, s = la.lstsq(A, b)
x
array([ 11., -4.])
A1 = np.array([[1,2],[2,4]])
A1
array([[1, 2],
[2, 4]])
b1 = np.array([3, 17])
b1
array([ 3, 17])
try:
la.solve(A1, b1)
except la.LinAlgError as e:
print(e)
singular matrix
x, resid, rank, s = la.lstsq(A1, b1)
x
array([ 1.48, 2.96])
A2 = np.random.random((10,3))
b2 = np.random.random(10)
try:
la.solve(A2, b2)
except ValueError as e:
print(e)
expected square matrix
x, resid, rank, s = la.lstsq(A2, b2)
x
array([ 0.4036226 , 0.38604513, 0.40359296])
Normal equations¶
One way to solve least squares equations \(X\beta = y\) for \(\beta\) is by using the formula \(\beta = (X^TX)^{-1}X^Ty\) as you may have learnt in statistical theory classes (or can derive yourself with a bit of calculus). This is implemented below.
Note: This is not how the la.lstsq
function solves least square
problems as it can be inefficent for large matrices.
def least_squares(X, y):
return la.solve(X.T @ X, X.T @ y)
least_squares(A2, b2)
array([ 0.4036226 , 0.38604513, 0.40359296])
Matrix Decompositions¶
A = np.array([[1,0.6],[0.6,4]])
A
array([[ 1. , 0.6],
[ 0.6, 4. ]])
LU¶
p, l, u = la.lu(A)
p
array([[ 1., 0.],
[ 0., 1.]])
l
array([[ 1. , 0. ],
[ 0.6, 1. ]])
u
array([[ 1. , 0.6 ],
[ 0. , 3.64]])
np.allclose(p@l@u, A)
True
Choleskey¶
U = la.cholesky(A)
U
array([[ 1. , 0.6 ],
[ 0. , 1.9078784]])
np.allclose(U.T @ U, A)
True
# If workiing wiht complex matrices
np.allclose(U.T.conj() @ U, A)
True
QR¶
Q, R = la.qr(A)
Q
array([[-0.85749293, -0.51449576],
[-0.51449576, 0.85749293]])
np.allclose((la.norm(Q[:,0]), la.norm(Q[:,1])), (1,1))
True
np.allclose(Q@R, A)
True
Spectral¶
u, v = la.eig(A)
u
array([ 0.88445056+0.j, 4.11554944+0.j])
v
array([[-0.98195639, -0.18910752],
[ 0.18910752, -0.98195639]])
np.allclose((la.norm(v[:,0]), la.norm(v[:,1])), (1,1))
True
np.allclose(v @ np.diag(u) @ v.T, A)
True
SVD¶
U, s, V = la.svd(A)
U
array([[ 0.18910752, 0.98195639],
[ 0.98195639, -0.18910752]])
np.allclose((la.norm(U[:,0]), la.norm(U[:,1])), (1,1))
True
s
array([ 4.11554944, 0.88445056])
V
array([[ 0.18910752, 0.98195639],
[ 0.98195639, -0.18910752]])
np.allclose((la.norm(V[:,0]), la.norm(V[:,1])), (1,1))
True
np.allclose(U @ np.diag(s) @ V, A)
True