Sparse Matrices¶
%matplotlib inline
import numpy as np
import pandas as pd
from scipy import sparse
import scipy.sparse.linalg as spla
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context('notebook', font_scale=1.5)
Creating a sparse matrix¶
There are many applications in which we deal with matrices that are mostly zeros. For example, a matrix representing social networks is very sparse - there are 7 billion people, but most people are only connected to a few hundred or thousand others directly. Storing such a social network as a sparse rather than dense matrix will offer orders of magnitude reductions in memory requirements and corresponding speed-ups in computation.
Coordinate format¶
The simplest sparse matrix format is built from the coordinates and values of the non-zero entries.
From dense matrix¶
A = np.random.poisson(0.2, (5,15)) * np.random.randint(0, 10, (5, 15))
A
array([[ 0, 5, 0, 0, 8, 0, 4, 0, 0, 0, 7, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 8, 0, 0, 2, 2, 4, 0, 0, 0, 7, 0, 0],
[ 0, 0, 7, 0, 9, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0],
[ 9, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0]])
rows, cols = np.nonzero(A)
vals = A[rows, cols]
vals
array([ 5, 8, 4, 7, 8, 2, 2, 4, 7, 7, 9, 1, 12, 9, 2, 2, 4,
8])
rows
array([0, 0, 0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4])
cols
array([ 1, 4, 6, 10, 3, 6, 7, 8, 12, 2, 4, 9, 10, 0, 1, 3, 8,
12])
X1 = sparse.coo_matrix(A)
X1
<5x15 sparse matrix of type '<class 'numpy.int64'>'
with 18 stored elements in COOrdinate format>
print(X1)
(0, 1) 5
(0, 4) 8
(0, 6) 4
(0, 10) 7
(2, 3) 8
(2, 6) 2
(2, 7) 2
(2, 8) 4
(2, 12) 7
(3, 2) 7
(3, 4) 9
(3, 9) 1
(3, 10) 12
(4, 0) 9
(4, 1) 2
(4, 3) 2
(4, 8) 4
(4, 12) 8
From coordinates¶
Note that the (values, (rows, cols)) argument is a single tuple.
X2 = sparse.coo_matrix((vals, (rows, cols)))
X2
<5x13 sparse matrix of type '<class 'numpy.int64'>'
with 18 stored elements in COOrdinate format>
print(X2)
(0, 1) 5
(0, 4) 8
(0, 6) 4
(0, 10) 7
(2, 3) 8
(2, 6) 2
(2, 7) 2
(2, 8) 4
(2, 12) 7
(3, 2) 7
(3, 4) 9
(3, 9) 1
(3, 10) 12
(4, 0) 9
(4, 1) 2
(4, 3) 2
(4, 8) 4
(4, 12) 8
Convert back to dense matrix¶
X2.todense()
matrix([[ 0, 5, 0, 0, 8, 0, 4, 0, 0, 0, 7, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 8, 0, 0, 2, 2, 4, 0, 0, 0, 7],
[ 0, 0, 7, 0, 9, 0, 0, 0, 0, 1, 12, 0, 0],
[ 9, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 8]])
Compressed Sparse Row and Column formats¶
When we have 2 or more repeated entries in the rows or cols, we can remove the redundancy by indicating the location of the first occurrence of a value and its increment instead of the full coordinates. These are known as CSR or CSC formats.
np.vstack([rows, cols])
array([[ 0, 0, 0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
4],
[ 1, 4, 6, 10, 3, 6, 7, 8, 12, 2, 4, 9, 10, 0, 1, 3, 8,
12]])
indptr = np.r_[np.searchsorted(rows, np.unique(rows)), len(rows)]
indptr
array([ 0, 4, 9, 13, 18])
X3 = sparse.csr_matrix((vals, cols, indptr))
X3
<4x13 sparse matrix of type '<class 'numpy.int64'>'
with 18 stored elements in Compressed Sparse Row format>
X3.todense()
matrix([[ 0, 5, 0, 0, 8, 0, 4, 0, 0, 0, 7, 0, 0],
[ 0, 0, 0, 8, 0, 0, 2, 2, 4, 0, 0, 0, 7],
[ 0, 0, 7, 0, 9, 0, 0, 0, 0, 1, 12, 0, 0],
[ 9, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 8]])
Casting from COO format¶
Because the coordinate format is more intuitive, it is often more convenient to first create a COO matrix then cast to CSR or CSC form.
X4 = X2.tocsr()
X4
<5x13 sparse matrix of type '<class 'numpy.int64'>'
with 18 stored elements in Compressed Sparse Row format>
COO summation convention¶
When entries are repeated in a COO matrix, they are summed. This provides a quick way to construct confusion matrices for evaluation of multi-class classification algorithms.
rows = np.r_[np.zeros(4), np.ones(4)]
cols = np.repeat([0,1], 4)
vals = np.arange(8)
rows
array([ 0., 0., 0., 0., 1., 1., 1., 1.])
cols
array([0, 0, 0, 0, 1, 1, 1, 1])
vals
array([0, 1, 2, 3, 4, 5, 6, 7])
X5 = sparse.csr_matrix((vals, (rows, cols)))
print(X5)
(0, 0) 6
(1, 1) 22
Application: Confusion matrix¶
Creating a 2 by 2 confusion matrix¶
obs = np.random.randint(0, 2, 100)
pred = np.random.randint(0, 2, 100)
vals = np.ones(100).astype('int')
pred
array([1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1,
1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0,
1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
0, 0, 1, 1, 0, 1, 0, 1])
vals.shape, obs.shape , pred.shape
((100,), (100,), (100,))
X6 = sparse.coo_matrix((vals, (pred, obs)))
X6.todense()
matrix([[21, 22],
[34, 23]])
Creating an \(n\) by \(n\) confusion matrix¶
For classifications with a large number of classes (e.g. image segmentation), the savings are even more dramatic.
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
knn = KNeighborsClassifier()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
test_size=0.5, random_state=42)
pred = knn.fit(X_train, y_train).predict(X_test)
X7 = sparse.coo_matrix((np.ones(len(pred)).astype('int'), (pred, y_test)))
pd.DataFrame(X7.todense(), index=iris.target_names, columns=iris.target_names)
setosa | versicolor | virginica | |
---|---|---|---|
setosa | 29 | 0 | 0 |
versicolor | 0 | 23 | 4 |
virginica | 0 | 0 | 19 |
Application: PageRank¶
SciPy provides efficient routines for solving large sparse systems as for dense matrices. We will illustrate by calculating the page rank for airports using data from the Bureau of Transportation Statisitcs.
data = pd.read_csv('data/airports.csv', usecols=[0,1])
data.shape
(445827, 2)
data.head()
ORIGIN_AIRPORT_ID | DEST_AIRPORT_ID | |
---|---|---|
0 | 10135 | 10397 |
1 | 10135 | 10397 |
2 | 10135 | 10397 |
3 | 10135 | 10397 |
4 | 10135 | 10397 |
lookup = pd.read_csv('data/names.csv', index_col=0)
lookup.shape
(6404, 1)
lookup.head()
Description | |
---|---|
Code | |
10001 | Afognak Lake, AK: Afognak Lake Airport |
10003 | Granite Mountain, AK: Bear Creek Mining Strip |
10004 | Lik, AK: Lik Mining Camp |
10005 | Little Squaw, AK: Little Squaw Airport |
10006 | Kizhuyak, AK: Kizhuyak Bay |
import networkx as nx
Construct the sparse adjacency matrix¶
g = nx.from_pandas_dataframe(data, source='ORIGIN_AIRPORT_ID', target='DEST_AIRPORT_ID')
airports = np.array(g.nodes())
adj_matrix = nx.to_scipy_sparse_matrix(g)
Construct the transition matrix¶
out_degrees = np.ravel(adj_matrix.sum(axis=1))
diag_matrix = sparse.diags(1 / out_degrees).tocsr()
M = (diag_matrix @ adj_matrix).T
Modify the transition matrix with a damping factor¶
The PageRank algorithm assumes that every node can be reached from every other node. To guard against case where a node has out-degree 0, we allow every node a small random chance of transitioning to any other node using a damping factor \(d\). Then we solve the linear system to find the pagerank score \(r\).
or equivalently in the \(Ax = b\) format
n = len(airports)
d = 0.85
I = sparse.eye(n, format='csc')
A = I - d * M
b = (1-d) / n * np.ones(n) # so the sum of all page ranks is 1
A.todense()
matrix([[ 1., 0., 0., ..., 0., 0., 0.],
[ 0., 1., 0., ..., 0., 0., 0.],
[ 0., 0., 1., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 1., 0., 0.],
[ 0., 0., 0., ..., 0., 1., 0.],
[ 0., 0., 0., ..., 0., 0., 1.]])
from scipy.sparse.linalg import spsolve
r = spsolve(A, b)
r.sum()
0.99999999999999978
idx = np.argsort(r)
top10 = idx[-10:][::-1]
bot10 = idx[:10]
df = lookup.loc[airports[top10]]
df['degree'] = out_degrees[top10]
df['pagerank']= r[top10]
df
Description | degree | pagerank | |
---|---|---|---|
Code | |||
10397 | Atlanta, GA: Hartsfield-Jackson Atlanta Intern... | 158 | 0.043286 |
13930 | Chicago, IL: Chicago O'Hare International | 139 | 0.033956 |
11292 | Denver, CO: Denver International | 129 | 0.031434 |
11298 | Dallas/Fort Worth, TX: Dallas/Fort Worth Inter... | 108 | 0.027596 |
13487 | Minneapolis, MN: Minneapolis-St Paul Internati... | 108 | 0.027511 |
12266 | Houston, TX: George Bush Intercontinental/Houston | 110 | 0.025967 |
11433 | Detroit, MI: Detroit Metro Wayne County | 100 | 0.024738 |
14869 | Salt Lake City, UT: Salt Lake City International | 78 | 0.019298 |
14771 | San Francisco, CA: San Francisco International | 76 | 0.017820 |
14107 | Phoenix, AZ: Phoenix Sky Harbor International | 79 | 0.017000 |
df = lookup.loc[airports[bot10]]
df['degree'] = out_degrees[bot10]
df['pagerank']= r[bot10]
df
Description | degree | pagerank | |
---|---|---|---|
Code | |||
12265 | Niagara Falls, NY: Niagara Falls International | 1 | 0.000693 |
14025 | Plattsburgh, NY: Plattsburgh International | 1 | 0.000693 |
11695 | Flagstaff, AZ: Flagstaff Pulliam | 1 | 0.000693 |
16218 | Yuma, AZ: Yuma MCAS/Yuma International | 1 | 0.000693 |
14905 | Santa Maria, CA: Santa Maria Public/Capt. G. A... | 1 | 0.000710 |
13964 | North Bend/Coos Bay, OR: Southwest Oregon Regi... | 1 | 0.000710 |
10157 | Arcata/Eureka, CA: Arcata | 1 | 0.000710 |
14487 | Redding, CA: Redding Municipal | 1 | 0.000710 |
12177 | Hobbs, NM: Lea County Regional | 1 | 0.000711 |
11049 | College Station/Bryan, TX: Easterwood Field | 1 | 0.000711 |
Visualize the airport connections graph and label the top and bottom 5 airports by pagerank¶
import warnings
labels = {airports[i]: lookup.loc[airports[i]].str.split(':').str[0].values[0]
for i in np.r_[top10[:5], bot10[:5]]}
with warnings.catch_warnings():
warnings.simplefilter('ignore')
nx.draw(g, pos=nx.spring_layout(g), labels=labels,
node_color='blue', font_color='red', alpha=0.5,
node_size=np.clip(5000*r, 1, 5000*r), width=0.1)