Sparse Matrices

[1]:
%matplotlib inline
import numpy as np
import pandas as pd
from scipy import sparse
import scipy.sparse.linalg as spla
import matplotlib.pyplot as plt
import seaborn as sns
[2]:
sns.set_context('notebook', font_scale=1.5)

Creating a sparse matrix

There are many applications in which we deal with matrices that are mostly zeros. For example, a matrix representing social networks is very sparse - there are 7 billion people, but most people are only connected to a few hundred or thousand others directly. Storing such a social network as a sparse rather than dense matrix will offer orders of magnitude reductions in memory requirements and corresponding speed-ups in computation.

Coordinate format

The simplest sparse matrix format is built from the coordinates and values of the non-zero entries.

From dense matrix

[3]:
A = np.random.poisson(0.2, (5,15)) * np.random.randint(0, 10, (5, 15))
A
[3]:
array([[9, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 8, 0, 0],
       [0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0],
       [0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0]])
[4]:
rows, cols = np.nonzero(A)
vals = A[rows, cols]
[5]:
vals
[5]:
array([9, 4, 4, 8, 9, 8, 5, 1, 6])
[6]:
rows
[6]:
array([0, 0, 1, 1, 2, 2, 3, 4, 4])
[7]:
cols
[7]:
array([ 0,  6, 10, 12,  2, 13, 13,  3,  6])
[8]:
X1 = sparse.coo_matrix(A)
X1
[8]:
<5x15 sparse matrix of type '<class 'numpy.int64'>'
        with 9 stored elements in COOrdinate format>
[9]:
print(X1)
  (0, 0)        9
  (0, 6)        4
  (1, 10)       4
  (1, 12)       8
  (2, 2)        9
  (2, 13)       8
  (3, 13)       5
  (4, 3)        1
  (4, 6)        6

From coordinates

Note that the (values, (rows, cols)) argument is a single tuple.

[10]:
X2 = sparse.coo_matrix((vals, (rows, cols)))
X2
[10]:
<5x14 sparse matrix of type '<class 'numpy.int64'>'
        with 9 stored elements in COOrdinate format>
[11]:
print(X2)
  (0, 0)        9
  (0, 6)        4
  (1, 10)       4
  (1, 12)       8
  (2, 2)        9
  (2, 13)       8
  (3, 13)       5
  (4, 3)        1
  (4, 6)        6

Convert back to dense matrix

[12]:
X2.todense()
[12]:
matrix([[9, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 8, 0],
        [0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5],
        [0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0]])

Compressed Sparse Row and Column formats

When we have repeated entries in the rows or cols, we can remove the redundancy by indicating the location of the first occurrence of a value and its increment instead of the full coordinates. These are known as CSR or CSC formats.

[13]:
np.vstack([rows, cols])
[13]:
array([[ 0,  0,  1,  1,  2,  2,  3,  4,  4],
       [ 0,  6, 10, 12,  2, 13, 13,  3,  6]])
[14]:
indptr = np.r_[np.searchsorted(rows, np.unique(rows)), len(rows)]
indptr
[14]:
array([0, 2, 4, 6, 7, 9])
[15]:
X3 = sparse.csr_matrix((vals, cols, indptr))
X3
[15]:
<5x14 sparse matrix of type '<class 'numpy.int64'>'
        with 9 stored elements in Compressed Sparse Row format>
[16]:
print(X3)
  (0, 0)        9
  (0, 6)        4
  (1, 10)       4
  (1, 12)       8
  (2, 2)        9
  (2, 13)       8
  (3, 13)       5
  (4, 3)        1
  (4, 6)        6
[17]:
X3.todense()
[17]:
matrix([[9, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 8, 0],
        [0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5],
        [0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0]])

Because the coordinate format is more intuitive, it is often more convenient to first create a COO matrix then cast to CSR or CSC form.

[18]:
X4 = X2.tocsr()
[19]:
X4
[19]:
<5x14 sparse matrix of type '<class 'numpy.int64'>'
        with 9 stored elements in Compressed Sparse Row format>

COO summation convention

When entries are repeated in a sparse matrix, they are summed. This provides a quick way to construct confusion matrices for evaluation of multi-class classification algorithms.

[20]:
rows = np.repeat([0,1], 4)
cols = np.repeat([0,1], 4)
vals = np.arange(8)
[21]:
rows
[21]:
array([0, 0, 0, 0, 1, 1, 1, 1])
[22]:
cols
[22]:
array([0, 0, 0, 0, 1, 1, 1, 1])
[23]:
vals
[23]:
array([0, 1, 2, 3, 4, 5, 6, 7])
[24]:
X5 = sparse.coo_matrix((vals, (rows, cols)))
[25]:
X5.todense()
[25]:
matrix([[ 6,  0],
        [ 0, 22]])
[26]:
obs = np.random.randint(0, 2, 100)
pred = np.random.randint(0, 2, 100)
vals = np.ones(100).astype('int')
[27]:
obs
[27]:
array([1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1,
       1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
       0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,
       1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0,
       1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0])
[28]:
pred
[28]:
array([0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0,
       1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0,
       1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
       1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1])
[29]:
vals.shape, obs.shape , pred.shape
[29]:
((100,), (100,), (100,))
[30]:
X6 = sparse.coo_matrix((vals, (pred, obs)))
[31]:
X6.todense()
[31]:
matrix([[27, 26],
        [26, 21]])

For classifications with a large number of classes (e.g. image segmentation), the savings are even more dramatic.

[32]:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
[33]:
iris = datasets.load_iris()
[34]:
knn = KNeighborsClassifier()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
                                                    test_size=0.5, random_state=42)
[35]:
pred = knn.fit(X_train, y_train).predict(X_test)
[36]:
pred
[36]:
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 1,
       0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0,
       0, 1, 1, 2, 1, 2, 1, 2, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
       1, 2, 0, 1, 2, 0, 1, 2, 1])
[37]:
y_test
[37]:
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2,
       0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0,
       0, 1, 2, 2, 1, 2, 1, 2, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0,
       1, 2, 0, 1, 2, 0, 2, 2, 1])
[38]:
X7 = sparse.coo_matrix((np.ones(len(pred)).astype('int'), (pred, y_test)))
pd.DataFrame(X7.todense(), index=iris.target_names, columns=iris.target_names)
[38]:
setosa versicolor virginica
setosa 29 0 0
versicolor 0 23 4
virginica 0 0 19
[39]:
X7.todense()
[39]:
matrix([[29,  0,  0],
        [ 0, 23,  4],
        [ 0,  0, 19]])

Solving large sparse linear systems

SciPy provides efficient routines for solving large sparse systems as for dense matrices. We will illustrate by calculating the page rank for airports using data from the Bureau of Transportation Statisitcs. The PageRank algorithm is used to rank web pages for search results, but it can be used to rank any node in a directed graph (here we have airports instead of web pages). PageRank is fundamentally about finding the steady state in a Markov chain and can be solved as a linear system.

The update at each time step for the page rank \(PR\) of a page \(p_i\) is

i0

The PageRank algorithm assumes that every node can be reached from every other node. To guard against case where a node has out-degree 0, we allow every node a small random chance of transitioning to any other node using a damping factor \(R\). Then we solve the linear system to find the pagerank score \(R\).

i1

In matrix notation, this is

i2

At steady state,

i3

and we can rearrange terms to solve for \(R\)

i4

[40]:
data = pd.read_csv('../data/airports.csv', usecols=[0,1])
[41]:
data.shape
[41]:
(445827, 2)
[42]:
data.head()
[42]:
ORIGIN_AIRPORT_ID DEST_AIRPORT_ID
0 10135 10397
1 10135 10397
2 10135 10397
3 10135 10397
4 10135 10397
[43]:
lookup = pd.read_csv('../data/names.csv', index_col=0)
[44]:
lookup.shape
[44]:
(6404, 1)
[45]:
lookup.head()
[45]:
Description
Code
10001 Afognak Lake, AK: Afognak Lake Airport
10003 Granite Mountain, AK: Bear Creek Mining Strip
10004 Lik, AK: Lik Mining Camp
10005 Little Squaw, AK: Little Squaw Airport
10006 Kizhuyak, AK: Kizhuyak Bay
[46]:
import networkx as nx
[47]:
g = nx.from_pandas_edgelist(data, source='ORIGIN_AIRPORT_ID', target='DEST_AIRPORT_ID')
[48]:
airports = np.array(g.nodes())
adj_matrix = nx.to_scipy_sparse_matrix(g)
[49]:
out_degrees = np.ravel(adj_matrix.sum(axis=1))
diag_matrix = sparse.diags(1 / out_degrees).tocsr()
M = (diag_matrix @ adj_matrix).T
[50]:
n = len(airports)
d = 0.85
I = sparse.eye(n, format='csc')
A = I - d * M
b = (1-d) / n * np.ones(n) # so the sum of all page ranks is 1
[51]:
A.todense()
[51]:
matrix([[ 1.        , -0.00537975, -0.0085    , ...,  0.        ,
          0.        ,  0.        ],
        [-0.28333333,  1.        , -0.0085    , ...,  0.        ,
          0.        ,  0.        ],
        [-0.28333333, -0.00537975,  1.        , ...,  0.        ,
          0.        ,  0.        ],
        ...,
        [ 0.        ,  0.        ,  0.        , ...,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , ...,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , ...,  0.        ,
          0.        ,  1.        ]])
[52]:
from scipy.sparse.linalg import spsolve
[53]:
r =  spsolve(A, b)
r.sum()
[53]:
0.9999999999999998
[54]:
idx = np.argsort(r)
[55]:
top10 = idx[-10:][::-1]
bot10 = idx[:10]
[56]:
df = lookup.loc[airports[top10]]
df['degree'] = out_degrees[top10]
df['pagerank']= r[top10]
df
[56]:
Description degree pagerank
Code
10397 Atlanta, GA: Hartsfield-Jackson Atlanta Intern... 158 0.043286
13930 Chicago, IL: Chicago O'Hare International 139 0.033956
11292 Denver, CO: Denver International 129 0.031434
11298 Dallas/Fort Worth, TX: Dallas/Fort Worth Inter... 108 0.027596
13487 Minneapolis, MN: Minneapolis-St Paul Internati... 108 0.027511
12266 Houston, TX: George Bush Intercontinental/Houston 110 0.025967
11433 Detroit, MI: Detroit Metro Wayne County 100 0.024738
14869 Salt Lake City, UT: Salt Lake City International 78 0.019298
14771 San Francisco, CA: San Francisco International 76 0.017820
14107 Phoenix, AZ: Phoenix Sky Harbor International 79 0.017000
[57]:
df = lookup.loc[airports[bot10]]
df['degree'] = out_degrees[bot10]
df['pagerank']= r[bot10]
df
[57]:
Description degree pagerank
Code
14025 Plattsburgh, NY: Plattsburgh International 1 0.000693
12265 Niagara Falls, NY: Niagara Falls International 1 0.000693
16218 Yuma, AZ: Yuma MCAS/Yuma International 1 0.000693
11695 Flagstaff, AZ: Flagstaff Pulliam 1 0.000693
14905 Santa Maria, CA: Santa Maria Public/Capt. G. A... 1 0.000710
14487 Redding, CA: Redding Municipal 1 0.000710
13964 North Bend/Coos Bay, OR: Southwest Oregon Regi... 1 0.000710
10157 Arcata/Eureka, CA: Arcata 1 0.000710
11049 College Station/Bryan, TX: Easterwood Field 1 0.000711
12177 Hobbs, NM: Lea County Regional 1 0.000711
[58]:
labels = {airports[i]: lookup.loc[airports[i]].str.split(':').str[0].values[0]
          for i in np.r_[top10[:5], bot10[:5]]}
nx.draw(g, pos=nx.spring_layout(g), labels=labels,
        node_color='blue', font_color='red', alpha=0.5,
        node_size=np.clip(5000*r, 1, 5000*r), width=0.1)
/Users/cliburn/opt/anaconda3/lib/python3.7/site-packages/networkx/drawing/nx_pylab.py:579: MatplotlibDeprecationWarning:
The iterable function was deprecated in Matplotlib 3.1 and will be removed in 3.3. Use np.iterable instead.
  if not cb.iterable(width):
../_images/notebooks_S07D_Sparse_Matrices_Annotated_72_1.png
[ ]: