Using pybind11
¶
The package pybind11
is provides an elegant way to wrap C++ code for
Python, including automatic conversions for numpy
arrays and the C++
Eigen
linear algebra library. Used with the cppimport
package,
this provides a very nice work flow for integrating C++ and Python:
- Edit C++ code
- Run Python code
! pip install pybind11
! pip install cppimport
Clone the Eigen library if necessary - no installation is required as Eigen is a header only library.
! git clone https://github.com/RLovelett/eigen.git
Resources¶
`pybind11
<http://pybind11.readthedocs.io/en/latest/>`__`cppimport
<https://github.com/tbenthompson/cppimport>`__`Eigen
<http://eigen.tuxfamily.org>`__
A first example of using pybind11
¶
Create a new subdirectory - e.g. example1
and create the following 5
files in it:
funcs.hpp
funcs.cpp
wrap.cpp
setup.py
test_funcs.py
First write the C++ header and implementation files
In [2]:
%mkdir example1
%cd example1
/home/jovyan/work/sta-663-2018/notebooks/example1
In [42]:
%%file funcs.hpp
int add(int i, int j);
Writing funcs.hpp
In [38]:
%%file funcs.cpp
int add(int i, int j) {
return i + j;
};
Writing funcs.cpp
Next write the C++ wrapper code using pybind11
in wrap.cpp
. The
arguments "i"_a=1, "j"_a=2
in the exported function definition tells
pybind11
to generate variables named i
with default value 1 and
j
with default value 2 for the add
function.
In [47]:
%%file wrap1.cpp
#include <pybind11/pybind11.h>
#include "funcs.hpp"
namespace py = pybind11;
using namespace pybind11::literals;
PYBIND11_MODULE(wrap1, m) {
m.doc() = "pybind11 example plugin";
m.def("add", &add, "A function which adds two numbers",
"i"_a=1, "j"_a=2);
}
Overwriting wrap1.cpp
Finally, write the setup.py
file to compile the extension module.
This is mostly boilerplate.
In [48]:
%%file setup.py
import os, sys
from distutils.core import setup, Extension
from distutils import sysconfig
cpp_args = ['-std=c++11']
ext_modules = [
Extension(
'wrap1',
['funcs.cpp', 'wrap1.cpp'],
include_dirs=['pybind11/include'],
language='c++',
extra_compile_args = cpp_args,
),
]
setup(
name='wrap1',
version='0.0.1',
author='Cliburn Chan',
author_email='cliburn.chan@duke.edu',
description='Example',
ext_modules=ext_modules,
)
Overwriting setup.py
Now build the extension module in the subdirectory with these files
In [49]:
%%bash
python setup.py build_ext -i
running build_ext
building 'wrap1' extension
gcc -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -Ipybind11/include -I/opt/conda/include/python3.6m -c funcs.cpp -o build/temp.linux-x86_64-3.6/funcs.o -std=c++11
gcc -pthread -B /opt/conda/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -Ipybind11/include -I/opt/conda/include/python3.6m -c wrap1.cpp -o build/temp.linux-x86_64-3.6/wrap1.o -std=c++11
g++ -pthread -shared -B /opt/conda/compiler_compat -L/opt/conda/lib -Wl,-rpath=/opt/conda/lib -Wl,--no-as-needed -Wl,--sysroot=/ build/temp.linux-x86_64-3.6/funcs.o build/temp.linux-x86_64-3.6/wrap1.o -L/opt/conda/lib -lpython3.6m -o /home/jovyan/work/sta-663-2018/notebooks/example6/wrap1.cpython-36m-x86_64-linux-gnu.so
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
And if you are successful, you should now see a new funcs.so
extension module. We can write a test_funcs.py
file test the
extension module:
In [50]:
%%file test_funcs.py
import wrap1
def test_add():
print(wrap1.add(3, 4))
assert(wrap1.add(3, 4) == 7)
if __name__ == '__main__':
test_add()
Writing test_funcs.py
And finally, running the test should not generate any error messages:
In [51]:
%%bash
python test_funcs.py
7
In [52]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks
Using cppimport
¶
In the development stage, it can be distracting to have to repeatedly rebuild the extension module by running
python setup.py clean
python setup.py build_ext -i
every single time you modify the C++ code. The cppimport
package
does this for you.
Create a new sub-directory exaample2
and copy the files
func.hpp
, funcs.cpp
and wrap.cpp
from example1
over. For
the previous example, we just need to add some annotation (between
<% and %>
delimiters) to the top of the wrap.cpp
file
In [53]:
%mkdir example2
%cp example1/funcs.* example2/
%cd example2
mkdir: cannot create directory ‘example2’: File exists
/home/jovyan/work/sta-663-2018/notebooks/example2
In [54]:
%%file wrap2.cpp
<%
cfg['compiler_args'] = ['-std=c++11']
cfg['sources'] = ['funcs.cpp']
setup_pybind11(cfg)
%>
#include "funcs.hpp"
#include <pybind11/pybind11.h>
namespace py = pybind11;
PYBIND11_MODULE(wrap2, m) {
m.doc() = "pybind11 example plugin";
m.def("add", &add, "A function which adds two numbers");
}
Overwriting wrap2.cpp
In [55]:
%%file test_funcs.py
import cppimport
funcs = cppimport.imp("wrap2")
def test_add():
assert(funcs.add(3, 4) == 7)
if __name__ == '__main__':
print(funcs.add(3,4))
test_add()
Overwriting test_funcs.py
In [56]:
%%bash
python test_funcs.py
7
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
Use of cppimport
¶
Note that cppimport.imp
is only called once. Once it is called, the
shared library is created and can be sued
In [58]:
! ls *so
wrap2.cpython-36m-x86_64-linux-gnu.so
That is, you can import wrap2 and call from notebook
In [59]:
import wrap2
wrap2.add(3, 4)
Out[59]:
7
without any need to manually build the extension module. Any updates
will be detected by cppimport
and it will automatically trigger a
re-build.
In [60]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks
Vectorizing functions for use with numpy
arrays¶
Example showing how to vectorize a square
function. Note that from
here on, we don’t bother to use separate header and implementation files
for these code snippets, and just write them together with the wrapping
code in a code.cpp
file. This means that with cppimport
, there
are only two files that we actually code for, a C++ code.cpp
file
and a python test file.
In [61]:
%mkdir example3
%cd example3
mkdir: cannot create directory ‘example3’: File exists
/home/jovyan/work/sta-663-2018/notebooks/example3
In [66]:
%%file wrap3.cpp
<%
cfg['compiler_args'] = ['-std=c++11']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
double square(double x) {
return x * x;
}
PYBIND11_MODULE(wrap3, m) {
m.doc() = "pybind11 example plugin";
m.def("square", py::vectorize(square), "A vectroized square function.");
}
Overwriting wrap3.cpp
In [67]:
import cppimport
wrap3 = cppimport.imp("wrap3")
wrap3.square([1,2,3])
Out[67]:
array([ 1., 4., 9.])
Once the shared libary is built, you can use it as a regular Python module.
In [68]:
! ls
wrap3.cpp wrap3.cpython-36m-x86_64-linux-gnu.so
In [69]:
import wrap3
wrap3.square([2,4,6])
Out[69]:
array([ 4., 16., 36.])
In [70]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks
Using numpy
arrays as function arguments and return values¶
Example showing how to pass numpy
arrays in and out of functions.
These numpy
array arguments can either be generic py:array
or
typed py:array_t<double>
. The properties of the numpy
array can
be obtained by calling its request
method. This returns a struct
of the following form:
struct buffer_info {
void *ptr;
size_t itemsize;
std::string format;
int ndim;
std::vector<size_t> shape;
std::vector<size_t> strides;
};
Here is C++ code for two functions - the function twice
shows how to
change a passed in numpy
array in-place using pointers; the function
sum
shows how to sum the elements of a numpy
array. By taking
advantage of the information in buffer_info
, the code will work for
arbitrary n-d
arrays.
In [71]:
%mkdir example4
%cd example4
mkdir: cannot create directory ‘example4’: File exists
/home/jovyan/work/sta-663-2018/notebooks/example4
In [72]:
%%file wrap4.cpp
<%
cfg['compiler_args'] = ['-std=c++11']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
// Passing in an array of doubles
void twice(py::array_t<double> xs) {
py::buffer_info info = xs.request();
auto ptr = static_cast<double *>(info.ptr);
int n = 1;
for (auto r: info.shape) {
n *= r;
}
for (int i = 0; i <n; i++) {
*ptr++ *= 2;
}
}
// Passing in a generic array
double sum(py::array xs) {
py::buffer_info info = xs.request();
auto ptr = static_cast<double *>(info.ptr);
int n = 1;
for (auto r: info.shape) {
n *= r;
}
double s = 0.0;
for (int i = 0; i <n; i++) {
s += *ptr++;
}
return s;
}
PYBIND11_MODULE(wrap4, m) {
m.doc() = "auto-compiled c++ extension";
m.def("sum", &sum);
m.def("twice", &twice);
}
Overwriting wrap4.cpp
In [73]:
%%file test_code.py
import cppimport
import numpy as np
code = cppimport.imp("wrap4")
if __name__ == '__main__':
xs = np.arange(12).reshape(3,4).astype('float')
print(xs)
print("np :", xs.sum())
print("cpp:", code.sum(xs))
print()
code.twice(xs)
print(xs)
Overwriting test_code.py
In [74]:
%%bash
python test_code.py
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]]
np : 66.0
cpp: 66.0
[[ 0. 2. 4. 6.]
[ 8. 10. 12. 14.]
[ 16. 18. 20. 22.]]
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
In [75]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks
More on working with numpy
arrays¶
This example shows how to use array access for numpy
arrays within
the C++ function. It is taken from the pybind11
documentation, but
fixes a small bug in the official version. As noted in the
documentation, the function would be more easily coded using
py::vectorize
.
In [76]:
%mkdir example5
%cd example5
mkdir: cannot create directory ‘example5’: File exists
/home/jovyan/work/sta-663-2018/notebooks/example5
In [77]:
%%file wrap5.cpp
<%
cfg['compiler_args'] = ['-std=c++11']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
auto buf1 = input1.request(), buf2 = input2.request();
if (buf1.ndim != 1 || buf2.ndim != 1)
throw std::runtime_error("Number of dimensions must be one");
if (buf1.shape[0] != buf2.shape[0])
throw std::runtime_error("Input shapes must match");
auto result = py::array(py::buffer_info(
nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
sizeof(double), /* Size of one item */
py::format_descriptor<double>::value, /* Buffer format */
buf1.ndim, /* How many dimensions? */
{ buf1.shape[0] }, /* Number of elements for each dimension */
{ sizeof(double) } /* Strides for each dimension */
));
auto buf3 = result.request();
double *ptr1 = (double *) buf1.ptr,
*ptr2 = (double *) buf2.ptr,
*ptr3 = (double *) buf3.ptr;
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
ptr3[idx] = ptr1[idx] + ptr2[idx];
return result;
}
PYBIND11_MODULE(wrap5, m) {
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
}
Overwriting wrap5.cpp
In [78]:
import cppimport
import numpy as np
code = cppimport.imp("wrap5")
xs = np.arange(12)
print(xs)
print(code.add_arrays(xs, xs))
[ 0 1 2 3 4 5 6 7 8 9 10 11]
[ 0. 2. 4. 6. 8. 10. 12. 14. 16. 18. 20. 22.]
In [79]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks
Using the C++ eigen
library to calculate matrix inverse and determinant¶
Example showing how Eigen
vectors and matrices can be passed in and
out of C++ functions. Note that Eigen
arrays are automatically
converted to/from numpy
arrays simply by including the
pybind/eigen.h
header. Because of this, it is probably simplest in
most cases to work with Eigen
vectors and matrices rather than
py::buffer
or py::array
where py::vectorize
is insufficient.
In [80]:
%mkdir example6
%cd example6
mkdir: cannot create directory ‘example6’: File exists
/home/jovyan/work/sta-663-2018/notebooks/example6
In [85]:
%%file wrap6.cpp
<%
cfg['compiler_args'] = ['-std=c++11']
cfg['include_dirs'] = ['../eigen3']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/eigen.h>
#include <Eigen/LU>
namespace py = pybind11;
// convenient matrix indexing comes for free
double get(Eigen::MatrixXd xs, int i, int j) {
return xs(i, j);
}
// takes numpy array as input and returns double
double det(Eigen::MatrixXd xs) {
return xs.determinant();
}
// takes numpy array as input and returns another numpy array
Eigen::MatrixXd inv(Eigen::MatrixXd xs) {
return xs.inverse();
}
PYBIND11_MODULE(wrap6, m) {
m.doc() = "auto-compiled c++ extension";
m.def("inv", &inv);
m.def("det", &det);
}
Overwriting wrap6.cpp
In [86]:
import cppimport
import numpy as np
code = cppimport.imp("wrap6")
A = np.array([[1,2,1],
[2,1,0],
[-1,1,2]])
print(A)
print(code.det(A))
print(code.inv(A))
[[ 1 2 1]
[ 2 1 0]
[-1 1 2]]
-3.0
[[-0.66666667 1. 0.33333333]
[ 1.33333333 -1. -0.66666667]
[-1. 1. 1. ]]
In [87]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks
Using pybind11
with openmp
¶
In [88]:
%mkdir example7
%cd example7
/home/jovyan/work/sta-663-2018/notebooks/example7
Here is an example of using OpenMP to integrate the value of \(\pi\)
written using pybind11
.
In [89]:
%%file wrap7.cpp
/*
<%
cfg['compiler_args'] = ['-std=c++11', '-fopenmp']
cfg['linker_args'] = ['-lgomp']
setup_pybind11(cfg)
%>
*/
#include <cmath>
#include <omp.h>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
// Passing in an array of doubles
void twice(py::array_t<double> xs) {
py::gil_scoped_acquire acquire;
py::buffer_info info = xs.request();
auto ptr = static_cast<double *>(info.ptr);
int n = 1;
for (auto r: info.shape) {
n *= r;
}
#pragma omp parallel for
for (int i = 0; i <n; i++) {
*ptr++ *= 2;
}
}
PYBIND11_MODULE(wrap7, m) {
m.doc() = "auto-compiled c++ extension";
m.def("twice", [](py::array_t<double> xs) {
/* Release GIL before calling into C++ code */
py::gil_scoped_release release;
return twice(xs);
});
}
Writing wrap7.cpp
In [90]:
import cppimport
import numpy as np
code = cppimport.imp("wrap7")
xs = np.arange(10).astype('double')
code.twice(xs)
xs
Out[90]:
array([ 0., 2., 4., 6., 8., 10., 12., 14., 16., 9.])
In [91]:
%cd ..
/home/jovyan/work/sta-663-2018/notebooks